##The parameter function
theta_h0 <- function(p, dk, ...) {
i <- (1:dk-1)/100
pol <- p[3]*i + p[4]*i^2
(p[1] + p[2]*i)*exp(pol)
}
##Generate coefficients
theta0 <- theta_h0(c(-0.1,10,-10,-10),4*12)
##Plot the coefficients
##Do not run
#plot(theta0)
##' ##Generate the predictor variable
xx <- ts(arima.sim(model = list(ar = 0.6), 600 * 12), frequency = 12)
##Simulate the response variable
y <- midas_sim(500, xx, theta0)
x <- window(xx, start=start(y))
##Create low frequency data.frame
ldt <- data.frame(y=y,trend=1:length(y))
##Create high frequency data.frame
hdt <- data.frame(x=window(x, start=start(y)))
##Fit unrestricted model
mu <- midas_u(y~fmls(x,2,12)-1, list(ldt, hdt))
##Include intercept and trend in regression
mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, hdt))
##Pass data as partialy named list
mu_it <- midas_u(y~fmls(x,2,12)+trend, list(ldt, x=hdt$x))
Run the code above in your browser using DataLab