Learn R Programming

Multivariate inverse Gaussian

This R package consists of utilities for multivariate inverse Gaussian (MIG) models with mean $\boldsymbol{\xi}$ and scale matrix $\boldsymbol{\Omega}$ defined over the halfspace ${\boldsymbol{x} \in \mathbb{R}^d: \boldsymbol{\beta}^\top\boldsymbol{x} > 0}$, including density evaluation and random number generation and kernel smoothing.

Distributions

  • mig for the MIG distribution(rmig for random number generation and dmig for density)
  • tellipt (rtellipt for random vector generation and dtellipt the density) for truncated Student-$t$ or Gaussian distribution over the half space ${\boldsymbol{x}: \boldsymbol{\beta}^\top\boldsymbol{x}>\delta}$ for $\delta \geq 0$.
  • fit_mig to estimate the parameters of the MIG distribution via maximum likelihood (mle) or the method of moments (mom).

Kernel density estimation

  • mig_kdens_bandwidth to estimate the bandwidth matrix minimizing the asymptotic mean integrated squared error (AMISE) or the leave-one-out likelihood cross validation, minimizing the Kullback--Leibler divergence. The amise estimators are estimated by drawing from a mig or truncated Gaussian vector via Monte Carlo
  • normalrule_bandwidth for the normal rule of Scott for the Gaussian kernel
  • mig_kdens for the kernel density estimator
  • tellipt_kdens for the truncated Gaussian kernel density estimator

Copy Link

Version

Install

install.packages('mig')

Monthly Downloads

138

Version

1.0

License

MIT + file LICENSE

Maintainer

Last Published

July 14th, 2024

Functions in mig (1.0)

.lsum

Log of sum of terms
fit_mig

Fit multivariate inverse Gaussian distribution
geomagnetic

Magnetic storms
dmig

Multivariate inverse Gaussian distribution
mig_kdens

Multivariate inverse Gaussian kernel density estimator
mig_rlcv

Robust likelihood cross-validation for kernel density estimation
mig_kdens_bandwidth

Optimal scale matrix for MIG kernel density estimation
mig_lcv

Likelihood cross-validation for kernel density estimation with MIG
.mig_mle

Maximum likelihood estimation of multivariate inverse Gaussian vectors
mig_loglik_grad

Gradient of the MIG log likelihood with respect to data
mig_loglik_hessian

Hessian of the MIG log likelihood with respect to data
mig_loglik_laplacian

Laplacian of the MIG log likelihood with respect to the data
dmig_laplacian

Laplacian of the MIG density with respect to the data
normalrule_bandwidth

Normal bandwidth rule
rtellipt

Simulate elliptical vector subject to a linear constraint
tellipt_kdens

Truncated Gaussian kernel density estimator
.mig_mom

Method of moments estimators for multivariate inverse Gaussian vectors
dtellipt

Density of elliptical vectors subject to a linear constraint
mig_kdens_arma

MIG kernel density estimator