An R function for linear mixed model analysis with integration two linear mixed model approaches (REML and MINQUE) and a permutation test.
lmm.perm(formula, data = list(), method = NULL, PermNum = NULL)
A linear mixed model formula.
Data frame. It can be default.
The default linear mixed model approach is MINQUE. Users can choose both or one of two linear mixed model approaches, REML and MINQUE.
Permutation number. The default number is 100
Return a list of matrices each including mean estimated variance components, standard error, and power
Miller, R. G. 1974. The jackknife - a review. Biometrika, 61:1- 15.
Rao, C.R. 1971. Estimation of variance and covariance components-MINQUE theory. J Multiva Ana 1:19
Rao, C. R. and Kleffe, J. 1980. Estimation of variance components. In Handbook of Statistics. Vol. l: 1-40. Krishnaiah, P. R. ed. New York. North-Holland.
Searle, S. R., Casella, G. and McCulloch, C. E. 1992. Variance Components. John Wiley & Sons, Inc. New York.
Wu J (2012) GenMod: An R package for various agricultural data analyses. ASA, CSSA, and SSSA 2012 International Annual Meetings, Cincinnati, OH, p 127
Wu J., Bondalapati K., Glover K., Berzonsky W., Jenkins J.N., McCarty J.C. 2013. Genetic analysis without replications: model evaluation and application in spring wheat. Euphytica. 190:447-458
Zhu J. 1989. Estimation of Genetic Variance Components in the General Mixed Model. Ph.D. Dissertation, NC State University, Raleigh, U.S.A
# NOT RUN {
library(minque)
data(ncii)
res=lmm.perm(Yld~1|Female*Male+Rep,data=ncii)
res
#End
# }
Run the code above in your browser using DataLab