Learn R Programming

mirt (version 1.35.1)

DRF: Differential Response Functioning statistics

Description

Function performs various omnibus differential item (DIF), bundle (DBF), and test (DTF) functioning procedures on an object estimated with multipleGroup(). The compensatory and non-compensatory statistics provided are described in Chalmers (2018), which generally can be interpreted as IRT generalizations of the SIBTEST and CSIBTEST statistics. These require the ACOV matrix to be computed in the fitted multiple-group model (otherwise, sets of plausible draws from the posterior are explicitly required).

Usage

DRF(
  mod,
  draws = NULL,
  focal_items = 1L:extract.mirt(mod, "nitems"),
  param_set = NULL,
  den.type = "both",
  CI = 0.95,
  npts = 1000,
  quadpts = NULL,
  theta_lim = c(-6, 6),
  Theta_nodes = NULL,
  plot = FALSE,
  DIF = FALSE,
  p.adjust = "none",
  par.strip.text = list(cex = 0.7),
  par.settings = list(strip.background = list(col = "#9ECAE1"), strip.border = list(col
    = "black")),
  auto.key = list(space = "right", points = FALSE, lines = TRUE),
  ...
)

Arguments

mod

a multipleGroup object which estimated only 2 groups

draws

a number indicating how many draws to take to form a suitable multiple imputation or bootstrap estimate of the expected test scores (100 or more). If boot = FALSE, requires an estimated parameter information matrix. Returns a list containing the bootstrap/imputation distribution and null hypothesis test for the sDRF statistics

focal_items

a numeric vector indicating which items to include in the DRF tests. The default uses all of the items (note that including anchors in the focal items has no effect because they are exactly equal across groups). Selecting fewer items will result in tests of 'differential bundle functioning'

param_set

an N x p matrix of parameter values drawn from the posterior (e.g., using the parametric sampling approach, bootstrap, of MCMC). If supplied, then these will be used to compute the DRF measures. Can be much more efficient to pre-compute these values if DIF, DBF, or DTF are being evaluated within the same model (especially when using the bootstrap method). See draw_parameters

den.type

character specifying how the density of the latent traits is computed. Default is 'both' to include the information from both groups, 'focal' for just the focal group, and 'reference' for the reference group

CI

range of confidence interval when using draws input

npts

number of points to use for plotting. Default is 1000

quadpts

number of quadrature nodes to use when constructing DRF statistics. Default is extracted from the input model object

theta_lim

lower and upper limits of the latent trait (theta) to be evaluated, and is used in conjunction with quadpts and npts

Theta_nodes

an optional matrix of Theta values to be evaluated in the draws for the sDRF statistics. However, these values are not averaged across, and instead give the bootstrap confidence intervals at the respective Theta nodes. Useful when following up a large sDRF or uDRF statistic, for example, to determine where the difference between the test curves are large (while still accounting for sampling variability). Returns a matrix with observed variability

plot

logical; plot the 'sDRF' functions for the evaluated sDBF or sDTF values across the integration grid or, if DIF = TRUE, the selected items as a faceted plot of individual items? If plausible parameter sets were obtained/supplied then imputed confidence intervals will be included

DIF

logical; return a list of item-level imputation properties using the DRF statistics? These can generally be used as a DIF detection method and as a graphical display for understanding DIF within each item

p.adjust

string to be passed to the p.adjust function to adjust p-values. Adjustments are located in the adj_pvals element in the returned list. Only applicable when DIF = TRUE

par.strip.text

plotting argument passed to lattice

par.settings

plotting argument passed to lattice

auto.key

plotting argument passed to lattice

...

additional arguments to be passed to lattice

References

Chalmers, R. P. (2018). Model-Based Measures for Detecting and Quantifying Response Bias. Psychometrika, 83(3), 696-732. 10.1007/s11336-018-9626-9

See Also

multipleGroup, DIF

Examples

Run this code
# NOT RUN {
set.seed(1234)
n <- 30
N <- 500

# only first 5 items as anchors
model <- 'F = 1-30
          CONSTRAINB = (1-5, a1), (1-5, d)'

a <- matrix(1, n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))

## -------------
# groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich')
dat2 <- simdata(a, d, N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
                     invariance=c('free_means', 'free_var'))
plot(mod)
plot(mod, which.items = 6:10) #DBF
plot(mod, type = 'itemscore')
plot(mod, type = 'itemscore', which.items = 10:15)

DRF(mod)
DRF(mod, focal_items = 6:10) #DBF
DRF(mod, DIF=TRUE)
DRF(mod, DIF=TRUE, focal_items = 10:15)

DRF(mod, plot = TRUE)
DRF(mod, focal_items = 6:10, plot = TRUE) #DBF
DRF(mod, DIF=TRUE, plot = TRUE)
DRF(mod, DIF=TRUE, focal_items = 10:15, plot = TRUE)

mirtCluster()
DRF(mod, draws = 500)
DRF(mod, draws = 500, plot=TRUE)

# pre-draw parameter set to save computations
param_set <- draw_parameters(mod, draws = 500)
DRF(mod, focal_items = 6, param_set=param_set) #DIF
DRF(mod, DIF=TRUE, param_set=param_set) #DIF
DRF(mod, focal_items = 6:10, param_set=param_set) #DBF
DRF(mod, param_set=param_set) #DTF

DRF(mod, focal_items = 6:10, draws=500) #DBF
DRF(mod, focal_items = 10:15, draws=500) #DBF

DIFs <- DRF(mod, draws = 500, DIF=TRUE)
print(DIFs)
DRF(mod, draws = 500, DIF=TRUE, plot=TRUE)

DIFs <- DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10)
print(DIFs)
DRF(mod, draws = 500, DIF=TRUE, focal_items = 6:10, plot = TRUE)

DRF(mod, DIF=TRUE, focal_items = 6)
DRF(mod, draws=500, DIF=TRUE, focal_items = 6)

# evaluate specific values for sDRF
Theta_nodes <- matrix(seq(-6,6,length.out = 100))

sDTF <- DRF(mod, Theta_nodes=Theta_nodes)
head(sDTF)
sDTF <- DRF(mod, Theta_nodes=Theta_nodes, draws=200)
head(sDTF)

# sDIF (isolate single item)
sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items=6)
head(sDIF)
sDIF <- DRF(mod, Theta_nodes=Theta_nodes, focal_items = 6, draws=200)
head(sDIF)

## -------------
## random slopes and intercepts for 15 items, and latent mean difference
##    (no systematic DTF should exist, but DIF will be present)
set.seed(1234)
dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 0, .25)),
                d + c(numeric(15), rnorm(n-15, 0, .5)), N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod1 <- multipleGroup(dat, 1, group=group)
plot(mod1)
DRF(mod1) #does not account for group differences! Need anchors

mod2 <- multipleGroup(dat, model, group=group, SE=TRUE,
                      invariance=c('free_means', 'free_var'))
plot(mod2)

#significant DIF in multiple items....
# DIF(mod2, which.par=c('a1', 'd'), items2test=16:30)
DRF(mod2)
DRF(mod2, draws=500) #non-sig DTF due to item cancellation

## -------------
## systematic differing slopes and intercepts (clear DTF)
set.seed(1234)
dat1 <- simdata(a, d, N, itemtype = 'dich', mu=.50, sigma=matrix(1.5))
dat2 <- simdata(a + c(numeric(15), rnorm(n-15, 1, .25)),
                d + c(numeric(15), rnorm(n-15, 1, .5)),
                N, itemtype = 'dich')
dat <- rbind(dat1, dat2)
mod3 <- multipleGroup(dat, model, group=group, SE=TRUE,
                      invariance=c('free_means', 'free_var'))
plot(mod3) #visable DTF happening

# DIF(mod3, c('a1', 'd'), items2test=16:30)
DRF(mod3) #unsigned bias. Signed bias (group 2 scores higher on average)
DRF(mod3, draws=500)
DRF(mod3, draws=500, plot=TRUE) #multiple DRF areas along Theta

# plot the DIF
DRF(mod3, draws=500, DIF=TRUE, plot=TRUE)

# evaluate specific values for sDRF
Theta_nodes <- matrix(seq(-6,6,length.out = 100))
sDTF <- DRF(mod3, Theta_nodes=Theta_nodes, draws=200)
head(sDTF)

# DIF
sDIF <- DRF(mod3, Theta_nodes=Theta_nodes, focal_items = 30, draws=200)
car::some(sDIF)

## ----------------------------------------------------------------
### multidimensional DTF

set.seed(1234)
n <- 50
N <- 1000

# only first 5 items as anchors within each dimension
model <- 'F1 = 1-25
          F2 = 26-50
          COV = F1*F2
          CONSTRAINB = (1-5, a1), (1-5, 26-30, d), (26-30, a2)'

a <- matrix(c(rep(1, 25), numeric(50), rep(1, 25)), n)
d <- matrix(rnorm(n), n)
group <- c(rep('Group_1', N), rep('Group_2', N))
Cov <- matrix(c(1, .5, .5, 1.5), 2)
Mean <- c(0, 0.5)

# groups completely equal
dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov))
dat2 <- simdata(a, d, N, itemtype = 'dich', sigma = Cov, mu = Mean)
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
                     invariance=c('free_means', 'free_var'))
coef(mod, simplify=TRUE)
plot(mod, degrees = c(45,45))
DRF(mod)

# some intercepts slightly higher in Group 2
d2 <- d
d2[c(10:15, 31:35)] <- d2[c(10:15, 31:35)] + 1
dat1 <- simdata(a, d, N, itemtype = 'dich', sigma = cov2cor(Cov))
dat2 <- simdata(a, d2, N, itemtype = 'dich', sigma = Cov, mu = Mean)
dat <- rbind(dat1, dat2)
mod <- multipleGroup(dat, model, group=group, SE=TRUE,
                     invariance=c('free_means', 'free_var'))
coef(mod, simplify=TRUE)
plot(mod, degrees = c(45,45))

DRF(mod)
DRF(mod, draws = 500)

# }

Run the code above in your browser using DataLab