Learn R Programming

mirt (version 1.35.1)

lagrange: Lagrange test for freeing parameters

Description

Lagrange (i.e., score) test to test whether parameters should be freed from a more constrained baseline model.

Usage

lagrange(mod, parnum, SE.type = "Oakes", type = "Richardson", ...)

Arguments

mod

an estimated model

parnum

a vector, or list of vectors, containing one or more parameter locations/sets of locations to be tested. See objects returned from mod2values for the locations

SE.type

type of information matrix estimator to use. See mirt for further details

type

type of numerical algorithm passed to numerical_deriv to obtain the gradient terms

...

additional arguments to pass to mirt

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. 10.18637/jss.v048.i06

See Also

wald

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
dat <- expand.table(LSAT7)
mod <- mirt(dat, 1, 'Rasch')
(values <- mod2values(mod))

#test all fixed slopes individually
parnum <- values$parnum[values$name == 'a1']
lagrange(mod, parnum)

# compare to LR test for first two slopes
mod2 <- mirt(dat, 'F = 1-5
                   FREE = (1, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

mod2 <- mirt(dat, 'F = 1-5
                   FREE = (2, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

mod2 <- mirt(dat, 'F = 1-5
                   FREE = (3, a1)', 'Rasch')
coef(mod2, simplify=TRUE)$items
anova(mod, mod2)

# test slopes first two slopes and last three slopes jointly
lagrange(mod, list(parnum[1:2], parnum[3:5]))

# test all 5 slopes and first + last jointly
lagrange(mod, list(parnum[1:5], parnum[c(1, 5)]))

# }

Run the code above in your browser using DataLab