# NOT RUN {
#LSAT6 dataset
dat <- expand.table(LSAT6)
# fit with 2-3 latent classes
(mod2 <- mdirt(dat, 2))
# }
# NOT RUN {
(mod3 <- mdirt(dat, 3))
summary(mod2)
residuals(mod2)
residuals(mod2, type = 'exp')
anova(mod2, mod3)
M2(mod2)
itemfit(mod2)
# generate classification plots
plot(mod2)
plot(mod2, facet_items = FALSE)
plot(mod2, profile = TRUE)
# available for polytomous data
mod <- mdirt(Science, 2)
summary(mod)
plot(mod)
plot(mod, profile=TRUE)
# classification based on response patterns
fscores(mod2, full.scores = FALSE)
# classify individuals either with the largest posterior probability.....
fs <- fscores(mod2)
head(fs)
classes <- 1:2
class_max <- classes[apply(apply(fs, 1, max) == fs, 1, which)]
table(class_max)
# ... or by probability sampling (i.e., plausible value draws)
class_prob <- apply(fs, 1, function(x) sample(1:2, 1, prob=x))
table(class_prob)
# plausible value imputations for stochastic classification in both classes
pvs <- fscores(mod2, plausible.draws=10)
tabs <- lapply(pvs, function(x) apply(x, 2, table))
tabs[[1]]
# fit with random starting points (run in parallel to save time)
mirtCluster()
mod <- mdirt(dat, 2, nruns=10)
#--------------------------
# Grade of measurement model
# define a custom Theta grid for including a 'fuzzy' class membership
(Theta <- matrix(c(1, 0, .5, .5, 0, 1), nrow=3 , ncol=2, byrow=TRUE))
(mod_gom <- mdirt(dat, 2, customTheta = Theta))
summary(mod_gom)
#-----------------
# Multidimensional discrete latent class model
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
# define Theta grid for three latent classes
(Theta <- thetaComb(0:1, 3))
(mod_discrete <- mdirt(dat, 3, customTheta = Theta))
summary(mod_discrete)
# Located latent class model
model <- mirt.model('C1 = 1-32
C2 = 1-32
C3 = 1-32
CONSTRAIN = (1-32, a1), (1-32, a2), (1-32, a3)')
(mod_located <- mdirt(dat, model, customTheta = diag(3)))
summary(mod_located)
#-----------------
### DINA model example
# generate some suitable data for a two dimensional DINA application
# (first columns are intercepts)
set.seed(1)
Theta <- expand.table(matrix(c(1,0,0,0,
1,1,0,0,
1,0,1,0,
1,1,1,1), 4, 4, byrow=TRUE),
freq = c(200,200,100,500))
a <- matrix(c(rnorm(15, -1.5, .5), rlnorm(5, .2, .3), numeric(15), rlnorm(5, .2, .3),
numeric(15), rlnorm(5, .2, .3)), 15, 4)
guess <- plogis(a[11:15,1]) # population guess
slip <- 1 - plogis(rowSums(a[11:15,])) # population slip
dat <- simdata(a, Theta=Theta, itemtype = 'lca')
# first column is the intercept, 2nd and 3rd are attributes
theta <- cbind(1, thetaComb(0:1, 2))
theta <- cbind(theta, theta[,2] * theta[,3]) #DINA interaction of main attributes
model <- mirt.model('Intercept = 1-15
A1 = 1-5
A2 = 6-10
A1A2 = 11-15')
# last 5 items are DINA (first 10 are unidimensional C-RUMs)
DINA <- mdirt(dat, model, customTheta = theta)
coef(DINA, simplify=TRUE)
summary(DINA)
M2(DINA) # fits well (as it should)
cfs <- coef(DINA, simplify=TRUE)$items[11:15,]
cbind(guess, estguess = plogis(cfs[,1]))
cbind(slip, estslip = 1 - plogis(rowSums(cfs)))
### DINO model example
theta <- cbind(1, thetaComb(0:1, 2))
# define theta matrix with negative interaction term
(theta <- cbind(theta, -theta[,2] * theta[,3]))
model <- mirt.model('Intercept = 1-15
A1 = 1-5, 11-15
A2 = 6-15
Yoshi = 11-15
CONSTRAIN = (11,a2,a3,a4), (12,a2,a3,a4), (13,a2,a3,a4),
(14,a2,a3,a4), (15,a2,a3,a4)')
# last five items are DINOs (first 10 are unidimensional C-RUMs)
DINO <- mdirt(dat, model, customTheta = theta)
coef(DINO, simplify=TRUE)
summary(DINO)
M2(DINO) #doesn't fit as well, because not the generating model
## C-RUM (analogous to MIRT model)
theta <- cbind(1, thetaComb(0:1, 2))
model <- mirt.model('Intercept = 1-15
A1 = 1-5, 11-15
A2 = 6-15')
CRUM <- mdirt(dat, model, customTheta = theta)
coef(CRUM, simplify=TRUE)
summary(CRUM)
# good fit, but over-saturated (main effects for items 11-15 can be set to 0)
M2(CRUM)
#------------------
#multidimensional latent class model
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
# 5 latent classes within 2 different sets of items
model <- mirt.model('C1 = 1-16
C2 = 1-16
C3 = 1-16
C4 = 1-16
C5 = 1-16
C6 = 17-32
C7 = 17-32
C8 = 17-32
C9 = 17-32
C10 = 17-32
CONSTRAIN = (1-16, a1), (1-16, a2), (1-16, a3), (1-16, a4), (1-16, a5),
(17-32, a6), (17-32, a7), (17-32, a8), (17-32, a9), (17-32, a10)')
theta <- diag(10) # defined explicitly. Otherwise, this profile is assumed
mod <- mdirt(dat, model, customTheta = theta)
coef(mod, simplify=TRUE)
summary(mod)
#------------------
# multiple group with constrained group probabilities
dat <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
group <- rep(c('G1', 'G2'), each = nrow(SAT12)/2)
Theta <- diag(2)
# the latent class parameters are technically located in the (nitems + 1) location
model <- mirt.model('A1 = 1-32
A2 = 1-32
CONSTRAINB = (33, c1)')
mod <- mdirt(dat, model, group = group, customTheta = Theta)
coef(mod, simplify=TRUE)
summary(mod)
#------------------
# Probabilistic Guttman Model (Proctor, 1970)
# example analysis can also be found in the sirt package (see ?prob.guttman)
data(data.read, package = 'sirt')
head(data.read)
Theta <- matrix(c(1,0,0,0,
1,1,0,0,
1,1,1,0,
1,1,1,1), 4, byrow=TRUE)
model <- mirt.model("INTERCEPT = 1-12
C1 = 1,7,9,11
C2 = 2,5,8,10,12
C3 = 3,4,6")
mod <- mdirt(data.read, model, customTheta=Theta)
summary(mod)
M2(mod)
itemfit(mod)
# }
Run the code above in your browser using DataLab