# NOT RUN {
# }
# NOT RUN {
#make some data
set.seed(1234)
N <- 750
a <- matrix(rlnorm(10,.3,1),10,1)
d <- matrix(rnorm(10), 10)
Theta <- matrix(sort(rnorm(N)))
pseudoIQ <- Theta * 5 + 100 + rnorm(N, 0 , 5)
pseudoIQ <- (pseudoIQ - mean(pseudoIQ))/10 #rescale variable for numerical stability
group <- factor(rep(c('G1','G2','G3'), each = N/3))
data <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=Theta)
covdata <- data.frame(group, pseudoIQ)
#use parallel computing
mirtCluster()
#specify IRT model
model <- 'Theta = 1-10'
#model with no person predictors
mod0 <- mirt(data, model, itemtype = 'Rasch')
#group as a fixed effect predictor (aka, uniform dif)
mod1 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items)
anova(mod0, mod1)
summary(mod1)
coef(mod1)
#same model as above in lme4
wide <- data.frame(id=1:nrow(data),data,covdata)
long <- reshape2::melt(wide, id.vars = c('id', 'group', 'pseudoIQ'))
library(lme4)
lmod0 <- glmer(value ~ 0 + variable + (1|id), long, family = binomial)
lmod1 <- glmer(value ~ 0 + group + variable + (1|id), long, family = binomial)
anova(lmod0, lmod1)
#model using 2PL items instead of Rasch
mod1b <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items, itemtype = '2PL')
anova(mod1, mod1b) #better with 2PL models using all criteria (as expected, given simdata pars)
#continuous predictor with group
mod2 <- mixedmirt(data, covdata, model, fixed = ~ 0 + group + items + pseudoIQ)
summary(mod2)
anova(mod1b, mod2)
#view fixed design matrix with and without unique item level intercepts
withint <- mixedmirt(data, covdata, model, fixed = ~ 0 + items + group, return.design = TRUE)
withoutint <- mixedmirt(data, covdata, model, fixed = ~ 0 + group, return.design = TRUE)
#notice that in result above, the intercepts 'items1 to items 10' were reassigned to 'd'
head(withint$X)
tail(withint$X)
head(withoutint$X) #no intercepts design here to be reassigned into item intercepts
tail(withoutint$X)
###################################################
### random effects
#make the number of groups much larger
covdata$group <- factor(rep(paste0('G',1:50), each = N/50))
#random groups
rmod1 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(rmod1)
coef(rmod1)
#random groups and random items
rmod2 <- mixedmirt(data, covdata, 1, random = list(~ 1|group, ~ 1|items))
summary(rmod2)
eff <- randef(rmod2) #estimate random effects
#random slopes with fixed intercepts (suppressed correlation)
rmod3 <- mixedmirt(data, covdata, 1, fixed = ~ 0 + items, random = ~ -1 + pseudoIQ|group)
summary(rmod3)
eff <- randef(rmod3)
str(eff)
###################################################
##LLTM, and 2PL version of LLTM
data(SAT12)
data <- key2binary(SAT12,
key = c(1,4,5,2,3,1,2,1,3,1,2,4,2,1,5,3,4,4,1,4,3,3,4,1,3,5,1,3,1,5,4,5))
model <- 'Theta = 1-32'
# Suppose that the first 16 items were suspected to be easier than the last 16 items,
# and we wish to test this item structure hypothesis (more intercept designs are possible
# by including more columns).
itemdesign <- data.frame(itemorder = factor(c(rep('easier', 16), rep('harder', 16))))
#notice that the 'fixed = ~ ... + items' argument is omitted
LLTM <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemdesign = itemdesign,
SE = TRUE) # SE argument ensures that the information matrix is computed accurately
summary(LLTM)
coef(LLTM)
wald(LLTM)
L <- matrix(c(-1, 1, 0), 1)
wald(LLTM, L) #first half different from second
#compare to items with estimated slopes (2PL)
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
itemdesign = itemdesign)
#twoPL not mixing too well (AR should be between .2 and .5), decrease MHcand
twoPL <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, itemtype = '2PL',
itemdesign = itemdesign, technical = list(MHcand = 0.8))
anova(twoPL, LLTM) #much better fit
summary(twoPL)
coef(twoPL)
wald(twoPL)
L <- matrix(0, 1, 34)
L[1, 1] <- 1
L[1, 2] <- -1
wald(twoPL, L) #n.s., which is the correct conclusion. Rasch approach gave wrong inference
##LLTM with item error term
LLTMwithError <- mixedmirt(data, model = model, fixed = ~ 0 + itemorder, random = ~ 1|items,
itemdesign = itemdesign)
summary(LLTMwithError)
#large item level variance after itemorder is regressed; not a great predictor of item difficulty
coef(LLTMwithError)
###################################################
### Polytomous example
#make an arbitrary group difference
covdat <- data.frame(group = rep(c('m', 'f'), nrow(Science)/2))
#partial credit model
mod <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group)
coef(mod)
#gpcm to estimate slopes
mod2 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
itemtype = 'gpcm')
summary(mod2)
anova(mod, mod2)
#graded model
mod3 <- mixedmirt(Science, covdat, model=1, fixed = ~ 0 + group,
itemtype = 'graded')
coef(mod3)
###################################################
# latent regression with Rasch and 2PL models
set.seed(1)
n <- 300
a <- matrix(1, 10)
d <- matrix(rnorm(10))
Theta <- matrix(c(rnorm(n, 0), rnorm(n, 1), rnorm(n, 2)))
covdata <- data.frame(group=rep(c('g1','g2','g3'), each=n))
dat <- simdata(a, d, N=n*3, Theta=Theta, itemtype = '2PL')
#had we known the latent abilities, we could have computed the regression coefs
summary(lm(Theta ~ covdata$group))
#but all we have is observed test data. Latent regression helps to recover these coefs
#Rasch model approach (and mirt equivalent)
rmod0 <- mirt(dat, 1, 'Rasch') # unconditional
# these two models are equivalent
rmod1a <- mirt(dat, 1, 'Rasch', covdata = covdata, formula = ~ group)
rmod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group)
anova(rmod0, rmod1b)
coef(rmod1a, simplify=TRUE)
summary(rmod1b)
# 2PL, requires different input to allow Theta variance to remain fixed
mod0 <- mirt(dat, 1) # unconditional
mod1a <- mirt(dat, 1, covdata = covdata, formula = ~ group, itemtype = '2PL')
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.fixed = ~group, itemtype = '2PL')
anova(mod0, mod1b)
coef(mod1a)$lr.betas
summary(mod1b)
# specifying specific regression effects is accomplished by passing a list of formula
model <- 'F1 = 1-5
F2 = 6-10'
covdata$contvar <- rnorm(nrow(covdata))
mod2 <- mirt(dat, model, itemtype = 'Rasch', covdata=covdata,
formula = list(F1 = ~ group + contvar, F2 = ~ group))
coef(mod2)[11:12]
mod2b <- mixedmirt(dat, covdata, model, fixed = ~ 0 + items,
lr.fixed = list(F1 = ~ group + contvar, F2 = ~ group))
summary(mod2b)
####################################################
## Simulated Multilevel Rasch Model
set.seed(1)
N <- 2000
a <- matrix(rep(1,10),10,1)
d <- matrix(rnorm(10))
cluster = 100
random_intercept = rnorm(cluster,0,1)
Theta = numeric()
for (i in 1:cluster)
Theta <- c(Theta, rnorm(N/cluster,0,1) + random_intercept[i])
group = factor(rep(paste0('G',1:cluster), each = N/cluster))
covdata <- data.frame(group)
dat <- simdata(a,d,N, itemtype = rep('2PL',10), Theta=matrix(Theta))
# null model
mod1 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, random = ~ 1|group)
summary(mod1)
# include level 2 predictor for 'group' variance
covdata$group_pred <- rep(random_intercept, each = N/cluster)
mod2 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, random = ~ 1|group)
# including group means predicts nearly all variability in 'group'
summary(mod2)
anova(mod1, mod2)
# can also be fit for Rasch/non-Rasch models with the lr.random input
mod1b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group)
summary(mod1b)
mod2b <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items + group_pred, lr.random = ~ 1|group)
summary(mod2b)
anova(mod1b, mod2b)
mod3 <- mixedmirt(dat, covdata, 1, fixed = ~ 0 + items, lr.random = ~ 1|group, itemtype = '2PL')
summary(mod3)
anova(mod1b, mod3)
head(cbind(randef(mod3)$group, random_intercept))
# }
Run the code above in your browser using DataLab