# NOT RUN {
### Parameters from Reckase (2009), p. 153
set.seed(1234)
a <- matrix(c(
.7471, .0250, .1428,
.4595, .0097, .0692,
.8613, .0067, .4040,
1.0141, .0080, .0470,
.5521, .0204, .1482,
1.3547, .0064, .5362,
1.3761, .0861, .4676,
.8525, .0383, .2574,
1.0113, .0055, .2024,
.9212, .0119, .3044,
.0026, .0119, .8036,
.0008, .1905,1.1945,
.0575, .0853, .7077,
.0182, .3307,2.1414,
.0256, .0478, .8551,
.0246, .1496, .9348,
.0262, .2872,1.3561,
.0038, .2229, .8993,
.0039, .4720, .7318,
.0068, .0949, .6416,
.3073, .9704, .0031,
.1819, .4980, .0020,
.4115,1.1136, .2008,
.1536,1.7251, .0345,
.1530, .6688, .0020,
.2890,1.2419, .0220,
.1341,1.4882, .0050,
.0524, .4754, .0012,
.2139, .4612, .0063,
.1761,1.1200, .0870),30,3,byrow=TRUE)*1.702
d <- matrix(c(.1826,-.1924,-.4656,-.4336,-.4428,-.5845,-1.0403,
.6431,.0122,.0912,.8082,-.1867,.4533,-1.8398,.4139,
-.3004,-.1824,.5125,1.1342,.0230,.6172,-.1955,-.3668,
-1.7590,-.2434,.4925,-.3410,.2896,.006,.0329),ncol=1)*1.702
mu <- c(-.4, -.7, .1)
sigma <- matrix(c(1.21,.297,1.232,.297,.81,.252,1.232,.252,1.96),3,3)
dataset1 <- simdata(a, d, 2000, itemtype = '2PL')
dataset2 <- simdata(a, d, 2000, itemtype = '2PL', mu = mu, sigma = sigma)
#mod <- mirt(dataset1, 3, method = 'MHRM')
#coef(mod)
# }
# NOT RUN {
### Unidimensional graded response model with 5 categories each
a <- matrix(rlnorm(20,.2,.3))
# for the graded model, ensure that there is enough space between the intercepts,
# otherwise closer categories will not be selected often (minimum distance of 0.3 here)
diffs <- t(apply(matrix(runif(20*4, .3, 1), 20), 1, cumsum))
diffs <- -(diffs - rowMeans(diffs))
d <- diffs + rnorm(20)
dat <- simdata(a, d, 500, itemtype = 'graded')
# mod <- mirt(dat, 1)
### An example of a mixed item, bifactor loadings pattern with correlated specific factors
a <- matrix(c(
.8,.4,NA,
.4,.4,NA,
.7,.4,NA,
.8,NA,.4,
.4,NA,.4,
.7,NA,.4),ncol=3,byrow=TRUE)
d <- matrix(c(
-1.0,NA,NA,
1.5,NA,NA,
0.0,NA,NA,
0.0,-1.0,1.5, #the first 0 here is the recommended constraint for nominal
0.0,1.0,-1, #the first 0 here is the recommended constraint for gpcm
2.0,0.0,NA),ncol=3,byrow=TRUE)
nominal <- matrix(NA, nrow(d), ncol(d))
#the first 0 and last (ncat - 1) = 2 values are the recommended constraints
nominal[4, ] <- c(0,1.2,2)
sigma <- diag(3)
sigma[2,3] <- sigma[3,2] <- .25
items <- c('2PL','2PL','2PL','nominal','gpcm','graded')
dataset <- simdata(a,d,2000,items,sigma=sigma,nominal=nominal)
#mod <- bfactor(dataset, c(1,1,1,2,2,2), itemtype=c(rep('2PL', 3), 'nominal', 'gpcm','graded'))
#coef(mod)
#### Convert standardized factor loadings to slopes
F2a <- function(F, D=1.702){
h2 <- rowSums(F^2)
a <- (F / sqrt(1 - h2)) * D
a
}
(F <- matrix(c(rep(.7, 5), rep(.5,5))))
(a <- F2a(F))
d <- rnorm(10)
dat <- simdata(a, d, 5000, itemtype = '2PL')
mod <- mirt(dat, 1)
coef(mod, simplify=TRUE)$items
summary(mod)
mod2 <- mirt(dat, 'F1 = 1-10
CONSTRAIN = (1-5, a1), (6-10, a1)')
summary(mod2)
anova(mod, mod2)
#### Convert classical 3PL paramerization into slope-intercept form
nitems <- 50
as <- rlnorm(nitems, .2, .2)
bs <- rnorm(nitems, 0, 1)
gs <- rbeta(nitems, 5, 17)
# convert first item (only intercepts differ in resulting transformation)
traditional2mirt(c('a'=as[1], 'b'=bs[1], 'g'=gs[1], 'u'=1), cls='3PL')
# convert all difficulties to intercepts
ds <- numeric(nitems)
for(i in 1:nitems)
ds[i] <- traditional2mirt(c('a'=as[i], 'b'=bs[i], 'g'=gs[i], 'u'=1),
cls='3PL')[2]
dat <- simdata(as, ds, N=5000, guess=gs, itemtype = '3PL')
# estimate with beta prior for guessing parameters
# mod <- mirt(dat, model="Theta = 1-50
# PRIOR = (1-50, g, expbeta, 5, 17)", itemtype = '3PL')
# coef(mod, simplify=TRUE, IRTpars=TRUE)$items
# data.frame(as, bs, gs, us=1)
#### Unidimensional nonlinear factor pattern
theta <- rnorm(2000)
Theta <- cbind(theta,theta^2)
a <- matrix(c(
.8,.4,
.4,.4,
.7,.4,
.8,NA,
.4,NA,
.7,NA),ncol=2,byrow=TRUE)
d <- matrix(rnorm(6))
itemtype <- rep('2PL',6)
nonlindata <- simdata(a=a, d=d, itemtype=itemtype, Theta=Theta)
#model <- '
#F1 = 1-6
#(F1 * F1) = 1-3'
#mod <- mirt(nonlindata, model)
#coef(mod)
#### 2PLNRM model for item 4 (with 4 categories), 2PL otherwise
a <- matrix(rlnorm(4,0,.2))
#first column of item 4 is the intercept for the correct category of 2PL model,
# otherwise nominal model configuration
d <- matrix(c(
-1.0,NA,NA,NA,
1.5,NA,NA,NA,
0.0,NA,NA,NA,
1, 0.0,-0.5,0.5),ncol=4,byrow=TRUE)
nominal <- matrix(NA, nrow(d), ncol(d))
nominal[4, ] <- c(NA,0,.5,.6)
items <- c(rep('2PL',3),'nestlogit')
dataset <- simdata(a,d,2000,items,nominal=nominal)
#mod <- mirt(dataset, 1, itemtype = c('2PL', '2PL', '2PL', '2PLNRM'), key=c(NA,NA,NA,0))
#coef(mod)
#itemplot(mod,4)
#return list of simulation parameters
listobj <- simdata(a,d,2000,items,nominal=nominal, returnList=TRUE)
str(listobj)
# generate dataset from converged model
mod <- mirt(Science, 1, itemtype = c(rep('gpcm', 3), 'nominal'))
sim <- simdata(model=mod, N=1000)
head(sim)
Theta <- matrix(rnorm(100))
sim <- simdata(model=mod, Theta=Theta)
head(sim)
# alternatively, define a suitable object with functions from the mirtCAT package
# help(generate.mirt_object)
library(mirtCAT)
nitems <- 50
a1 <- rlnorm(nitems, .2,.2)
d <- rnorm(nitems)
g <- rbeta(nitems, 20, 80)
pars <- data.frame(a1=a1, d=d, g=g)
head(pars)
obj <- generate.mirt_object(pars, '3PL')
dat <- simdata(N=200, model=obj)
#### 10 item GGUMs test with 4 categories each
a <- rlnorm(10, .2, .2)
b <- rnorm(10) #passed to d= input, but used as the b parameters
diffs <- t(apply(matrix(runif(10*3, .3, 1), 10), 1, cumsum))
t <- -(diffs - rowMeans(diffs))
dat <- simdata(a, b, 1000, 'ggum', t=t)
apply(dat, 2, table)
# mod <- mirt(dat, 1, 'ggum')
# coef(mod)
######
# prob.list example
# custom probability function that returns a matrix
fun <- function(a, b, theta){
P <- 1 / (1 + exp(-a * (theta-b)))
cbind(1-P, P)
}
set.seed(1)
theta <- matrix(rnorm(100))
prob.list <- list()
nitems <- 5
a <- rlnorm(nitems, .2, .2); b <- rnorm(nitems, 0, 1/2)
for(i in 1:nitems) prob.list[[i]] <- fun(a[i], b[i], theta)
str(prob.list)
dat <- simdata(prob.list=prob.list)
head(dat)
# prob.list input is useful when defining custom items as well
name <- 'old2PL'
par <- c(a = .5, b = -2)
est <- c(TRUE, TRUE)
P.old2PL <- function(par,Theta, ncat){
a <- par[1]
b <- par[2]
P1 <- 1 / (1 + exp(-1*a*(Theta - b)))
cbind(1-P1, P1)
}
x <- createItem(name, par=par, est=est, P=P.old2PL)
prob.list[[1]] <- x@P(x@par, theta)
# }
Run the code above in your browser using DataLab