Learn R Programming

mirt (version 1.42)

imputeMissing: Imputing plausible data for missing values

Description

Given an estimated model from any of mirt's model fitting functions and an estimate of the latent trait, impute plausible missing data values. Returns the original data in a data.frame without any NA values. If a list of Theta values is supplied then a list of complete datasets is returned instead.

Usage

imputeMissing(x, Theta, warn = TRUE, ...)

Arguments

x

an estimated model x from the mirt package

Theta

a matrix containing the estimates of the latent trait scores (e.g., via fscores)

warn

logical; print warning messages?

...

additional arguments to pass

Author

Phil Chalmers rphilip.chalmers@gmail.com

References

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. tools:::Rd_expr_doi("10.18637/jss.v048.i06")

Examples

Run this code
if (FALSE) {
dat <- expand.table(LSAT7)
(original <- mirt(dat, 1))
NAperson <- sample(1:nrow(dat), 20, replace = TRUE)
NAitem <- sample(1:ncol(dat), 20, replace = TRUE)
for(i in 1:20)
    dat[NAperson[i], NAitem[i]] <- NA
(mod <- mirt(dat, 1))
scores <- fscores(mod, method = 'MAP')

# re-estimate imputed dataset (good to do this multiple times and average over)
fulldata <- imputeMissing(mod, scores)
(fullmod <- mirt(fulldata, 1))

# with multipleGroup
set.seed(1)
group <- sample(c('group1', 'group2'), 1000, TRUE)
mod2 <- multipleGroup(dat, 1, group, TOL=1e-2)
fs <- fscores(mod2)
fulldata2 <- imputeMissing(mod2, fs)

}

Run the code above in your browser using DataLab