if (FALSE) {
# simulate data
dat1 <- matrix(sample(c('Disagree', 'Strongly Disagree', 'Agree',
'Neutral', 'Strongly Agree'), 1000*5, replace=TRUE),
nrow=1000, ncol=5)
dat1[2,2] <- dat1[3,3] <- dat1[1,3] <- NA # NAs added for flavour
dat2 <- matrix(sample(c('D', 'SD', 'A', 'N', 'SA'), 1000*5, replace=TRUE),
nrow=1000, ncol=5)
dat <- cbind(dat1, dat2)
# separately
intdat1 <- likert2int(dat1)
head(dat1)
head(intdat1)
# more useful with explicit levels
lvl1 <- c('Strongly Disagree'=1, 'Disagree'=2, 'Neutral'=3, 'Agree'=4,
'Strongly Agree'=5)
intdat1 <- likert2int(dat1, levels = lvl1)
head(dat1)
head(intdat1)
# second data
lvl2 <- c('SD'=1, 'D'=2, 'N'=3, 'A'=4, 'SA'=5)
intdat2 <- likert2int(dat2, levels = lvl2)
head(dat2)
head(intdat2)
# full dataset (using both mapping schemes)
intdat <- likert2int(dat, levels = c(lvl1, lvl2))
head(dat)
head(intdat)
#####
# data.frame as input with ordered factors
dat1 <- data.frame(dat1)
dat2 <- data.frame(dat2)
dat.old <- cbind(dat1, dat2)
colnames(dat.old) <- paste0('Item_', 1:10)
str(dat.old) # factors are leveled alphabetically by default
# create explicit ordering in factor variables
for(i in 1:ncol(dat1))
levels(dat1[[i]]) <- c('Strongly Disagree', 'Disagree', 'Neutral', 'Agree',
'Strongly Agree')
for(i in 1:ncol(dat2))
levels(dat2[[i]]) <- c('SD', 'D', 'N', 'A', 'SA')
dat <- cbind(dat1, dat2)
colnames(dat) <- colnames(dat.old)
str(dat) # note ordering
intdat <- likert2int(dat)
head(dat)
head(intdat)
}
Run the code above in your browser using DataLab