# NOT RUN {
# Generate complete data
set.seed(1)
mu.X <- c(1, 1)
Sigma.X <- matrix(c(1, 1, 1, 4), nrow = 2)
n <- 50 # train set size
p <- 2 # number of covariates
X.complete <- matrix(rnorm(n*p), nrow=n)%*%chol(Sigma.X) +
matrix(rep(mu.X,n), nrow=n, byrow = TRUE)
b <- c(2, 3, -1)
sigma.eps <- 0.25
y <- cbind(rep(1, n), X.complete) %*% b +
rnorm(n, 0, sigma.eps)
# Add missing values
p.miss <- 0.10
patterns <- runif(n*p)<p.miss #missing completely at random
X.obs <- X.complete
X.obs[patterns] <- NA
# Estimate regression using EM
df.obs = data.frame(y ,X.obs)
miss.list = miss.lm(y~., data=df.obs)
# Generate new dataset for prediction
nt <- 20
Xt <- matrix(rnorm(nt*p), nrow=nt)%*%chol(Sigma.X)+
matrix(rep(mu.X,nt), nrow=nt, byrow = TRUE)
# Generate missingness in new dataset
patterns <- runif(nt*p)<p.miss
Xt.obs <- Xt
Xt.obs[patterns] <- NA
# Prediction with missing values
miss.pred = predict(miss.list, data.frame(Xt.obs))
print(miss.pred)
# }
Run the code above in your browser using DataLab