Use the MCMC to obtain estimate of parameters of a multivariate skew normal distribution.
mvsn.mcmc(Y, prior.Mu0=NULL, prior.Sigma0=NULL,
prior.muDelta0=NULL, prior.sigmaDelta0=NULL,
prior.H0=NULL, prior.P0=NULL,
nmcmc=10000, nburn=nmcmc/10, nthin=1, seed=100)a matrix of observations with one subject per row.
mean vector of multivariate normal prior of the
parameter \(\mu\). The default value is NULL. For the default,
the value will be generated automatically.
variance matrix of multivariate normal prior of
the parameter \(\mu\). The default value is NULL. For the default,
the value will be generated automatically.
mean vector of normal prior of the diagonal elements of parameter \(D\).
The default value is NULL. For the default,
the value will be generated automatically.
standard deviation vector of normal prior of the diagonal
elements of parameter \(D\).
The default value is NULL. For the default,
the value will be generated automatically.
the inverse of scale matrix of Wishart prior of the inverse of
parameter \(\Sigma\). The default value is NULL. For the default,
the value will be generated automatically.
the degrees of freedom of Wishart prior of the inverse of
parameter \(\Sigma\). The default value is NULL. For the default,
the value will be generated automatically.
number of iterations. The default value is 10000.
number of burn-in. The default value is nmcmc/10.
output every nthin-th sample. The default value is 1 (no thinning).
random seed. The default value is 100.
a matrix of parameter \(\mu\) of the distribution, one row per iteration.
a three dimensional array of parameter \(\Sigma\) of the distribution. Sigma[i,,] is the result from the i-th iteration.
a matrix of diagonal elements of parameter \(D\) of the distribution, one row per iteration.
DIC value.
This function estimates the parameters of a multivariate skew normal distribution as in Sahu et al. 2003 using the MCMC.
Sahu, Sujit K., Dipak K. Dey, and Marcia D. Branco. (2003) A new class of multivariate skew distributions with applications to Bayesian regression models. Canadian Journal of Statistics vol. 31, no. 2 129-150.
# NOT RUN {
Mu <- rep(400, 2)
Sigma <- diag(c(40, 40))
D <- diag(c(-30, -30))
Y <- rmvsn(n=1000, D, Mu, Sigma)
mcmc <- mvsn.mcmc(Y)
# }
Run the code above in your browser using DataLab