Learn R Programming

miscor (version 0.1-0)

plot.sim.seqtest.cor: Plot sim.seqtest

Description

This function plots the sim.seqtest.cor object

Usage

"plot"(x, plot.lines = TRUE, plot.nom = TRUE, ylim = NULL, type = "b", pch = 19, lty = 1, lwd = 1, ...)

Arguments

x
sim.seqtest.cor object.
plot.lines
plot lines connecting points withe the x- and y-axis.
plot.nom
plot line at the nominal alpha.
ylim
the y limits of the plot.
type
what type of plot should be drawn ("p" for points, "l" for lines and "b" for both).
pch
plotting character.
lty
line type.
lwd
line width.
...
further arguments passed to or from other methods.

References

Schneider, B., Rasch, D., Kubinger, K. D., & Yanagida, T. (2015). A Sequential triangular test of a correlation coefficient's null-hypothesis: 0 $< \rho \le \rho$0. Statistical Papers, 56, 689-699.

See Also

sim.seqtest.cor, seqtest.cor

Examples

Run this code
## Not run: 
# 
# #---------------------------------------------
# # Determine optimal k and nominal type-II-risk
# # H0: rho <= 0.3, H1: rho > 0.3
# # alpha = 0.01, beta = 0.05, delta = 0.25
# 
# # Step 1: Determine the optimal size of subsamples (k)
# 
# sim.obj.1 <- sim.seqtest.cor(rho.sim = 0.3, k = seq(4, 16, by = 1), rho = 0.3,
#                              alternative = "greater",
#                              delta = 0.25, alpha = 0.05, beta = 0.05,
#                              runs = 10000)
# 
# plot(sim.obj.1)
# 
# # Step 2: Determine the optimal nominal type-II-risk based on
# #         the optimal size of subsamples (k) from step 1
# 
# sim.obj.2 <- sim.seqtest.cor(rho.sim = 0.55, k = 16, rho = 0.3,
#                              alternative = "greater",
#                              delta = 0.25, alpha = 0.05, beta = seq(0.05, 0.15, by = 0.01),
#                              runs = 10000)
# 
# plot(sim.obj.2)
# ## End(Not run)

Run the code above in your browser using DataLab