Learn R Programming

miscor (version 0.1-0)

size.cor: Sample size determination for testing the product-moment correlation coefficient

Description

This function performs sample size computation for testing the product-moment correlation coefficient for H0: $\rho = \rho$0 based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.cor(rho = NULL, delta, alternative = c("two.sided", "less", "greater"), alpha = 0.05, beta = 0.1, output = TRUE)

Arguments

rho
a number indicating the correlation coefficient under the null hypothesis, $\rho$0.
delta
minimum difference to be detected, $\delta$.
alternative
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
alpha
type-I-risk, $\alpha$.
beta
type-II-risk, $\beta$.
output
logical: if TRUE, output is shown.

Value

Returns an object of class size with following entries:
call
function call
type
type of the test (i.e., correlation coefficient)
spec
specification of function arguments
res
list with the result, i.e., optimal sample size

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R. Boca Raton: Chapman & Hall/CRC.

See Also

test.cor, seqtest.cor

Examples

Run this code
#--------------------------------------
# H0: rho = 0.3, H1: rho != 0.3
# alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alpha = 0.05, beta = 0.2)

#--------------------------------------
# H0: rho <= 0.3, H1: rho > 0.3
# alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alternative = "greater",
         alpha = 0.05, beta = 0.2)

Run the code above in your browser using DataLab