Learn R Programming

misty (version 0.4.5)

size.mean: Sample Size Determination for Testing Arithmetic Means

Description

This function performs sample size computation for the one-sample and two-sample t-test based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.mean(delta, sample = c("two.sample", "one.sample"),
          alternative = c("two.sided", "less", "greater"),
          alpha = 0.05, beta = 0.1, check = TRUE, output = TRUE)

Arguments

delta

a numeric value indicating the relative minimum difference to be detected, \(\delta\).

sample

a character string specifying one- or two-sample t-test, must be one of "two.sample" (default) or "one.sample".

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

alpha

type-I-risk, \(\alpha\).

beta

type-II-risk, \(\beta\).

check

logical: if TRUE, argument specification is checked.

output

logical: if TRUE, output is shown.

Value

Returns an object of class misty.object with following entries:

call function call
type type of the test (i.e., arithmetic mean)
args specification of function arguments
result list with the result, i.e., optimal sample size

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS. New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R. Boca Raton: Chapman & Hall/CRC.

See Also

size.prop, size.cor

Examples

Run this code
# NOT RUN {
#--------------------------------------
# Two-sided one-sample test
# H0: mu = mu.0, H1: mu != mu.0
# alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
          alternative = "two.sided", alpha = 0.05, beta = 0.2)

#--------------------------------------
# One-sided one-sample test
# H0: mu <= mu.0, H1: mu > mu.0
# alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
          alternative = "greater", alpha = 0.05, beta = 0.2)

#--------------------------------------
# Two-sided two-sample test
# H0: mu.1 = mu.2, H1: mu.1 != mu.2
# alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
          alternative = "two.sided", alpha = 0.01, beta = 0.1)

#--------------------------------------
# One-sided two-sample test
# H0: mu.1 <= mu.2, H1: mu.1 > mu.2
# alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
          alternative = "greater", alpha = 0.01, beta = 0.1)
# }

Run the code above in your browser using DataLab