Learn R Programming

misty (version 0.4.5)

write.result: Write Results of a misty Object into an Excel file

Description

This function writes the results of a misty object (misty.object) into a Excel file.

Usage

write.result(x, file = "Results.xlsx")

Arguments

x

misty object (misty.object) resulting from a misty function supported by the write.result function (see 'Details').

file

a character string naming a file with or without file extension '.xlsx', e.g., "Results.xlsx" or "Results".

Details

Currently the function supports result objects from the function cor.matrix, crosstab, freq, item.alpha, item.alpha, item.cfa, item.omega, multilevel.cor, multilevel.descript, na.coverage, na.descript, and na.pattern.

See Also

cor.matrix, crosstab, freq, item.alpha, item.cfa, item.omega, multilevel.cor, multilevel.descript, na.coverage, na.descript, na.pattern

Examples

Run this code
# NOT RUN {
#--------------------------------------
# cor.matrix() function

result <- cor.matrix(mtcars, print = "all", output = FALSE)
write.result(result, "Correlation.xlsx")

#--------------------------------------
# crosstab() function

result <- crosstab(mtcars[, c("carb", "gear")], print = "all", output = FALSE)
write.result(result, "Crosstab.xlsx")

#--------------------------------------
# descript() function

result <- descript(mtcars, output = FALSE)
write.result(result, "Descript.xlsx")

#--------------------------------------
# freq() function

result <- freq(mtcars, exclude = 99, output = FALSE)
write.result(result, "Freq.xlsx")

#--------------------------------------
# item.alpha() function

result <- item.alpha(attitude, output = FALSE)
write.result(result, "Alpha.xlsx")

#--------------------------------------
# item.cfa() function

# Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

result <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")],
                   output = FALSE)
write.result(result, "CFA.xlsx")

#--------------------------------------
# item.omega() function

result <- item.omega(attitude, output = FALSE)
write.result(result, "Omega.xlsx")

#--------------------------------------
# multilevel.cor() function

# Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

result <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],
                         cluster = Demo.twolevel$cluster, output = FALSE)
write.result(result, "Multilevel_Correlation.xlsx")

#--------------------------------------
# multilevel.descript() function

# Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

result <- multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3")],
                              cluster = Demo.twolevel$cluster, output = FALSE)
write.result(result, "Multilevel_Descript.xlsx")

#--------------------------------------
# na.coverage() function

dat <- data.frame(x = c(1, NA, NA, 6, 3),
                  y = c(7, NA, 8, 9, NA),
                  z = c(2, NA, 3, NA, 5))

result <- na.coverage(dat, output = FALSE)
write.result(result, "NA_Coverage.xlsx")

#--------------------------------------
# na.descript() function

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),
                  x2 = c(4, 2, 5, 1, 5, 3, 4, 5),
                  x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
                  x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

 result <- na.descript(dat, table = TRUE, output = FALSE)
write.result(result, "NA_Descriptives.xlsx")

#--------------------------------------
# na.pattern() function

dat <- data.frame(x = c(1, NA, NA, 6, 3),
                  y = c(7, NA, 8, 9, NA),
                  z = c(2, NA, 3, NA, 5))

result <- na.pattern(dat, output = FALSE)
write.result(result, "NA_Pattern.xlsx")
# }

Run the code above in your browser using DataLab