This function computes a summary of missing data patterns, i.e., number ( cases with a specific missing data pattern.
na.pattern(..., data = NULL, order = FALSE, digits = 2, as.na = NULL, write = NULL,
append = TRUE, check = TRUE, output = TRUE)
Returns an object of class misty.object
, which is a list with following
entries:
call
function call
type
type of analysis
data
data frame used for the current analysis
args
specification of function arguments
result
result tables
pattern
group variable of missing data pattern
a matrix or data frame with incomplete data, where missing
values are coded as NA
. a matrix or data frame with incomplete data, where missing
values are coded as NA
. Alternatively, an expression
indicating the variable names in data
e.g.,
na.pattern(x1, x2, x3, data = dat)
.Note that the operators
.
, +
, -
, ~
, :
, ::
,
and !
can also be used to select variables, see 'Details'
in the df.subset
function.
a data frame when specifying one or more variables in the
argument ...
. Note that the argument is NULL
when specifying a matrix or data frame for the argument ...
.
logical: if TRUE
, variables are ordered from left to
right in increasing order of missing values.
an integer value indicating the number of decimal places to be used for displaying percentages.
a numeric vector indicating user-defined missing values, i.e. these values are converted to NA before conducting the analysis.
a character string naming a file for writing the output into
either a text file with file extension ".txt"
(e.g.,
"Output.txt"
) or Excel file with file extention
".xlsx"
(e.g., "Output.xlsx"
). If the file
name does not contain any file extension, an Excel file will
be written.
logical: if TRUE
(default), output will be appended
to an existing text file with extension .txt
specified
in write
, if FALSE
existing text file will be
overwritten.
logical: if TRUE
(default), argument specification is checked.
logical: if TRUE
(default), output is shown.
Takuya Yanagida takuya.yanagida@univie.ac.at
Enders, C. K. (2010). Applied missing data analysis. Guilford Press.
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530
van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.
write.result
, as.na
, na.as
,
na.auxiliary
, na.coverage
, na.descript
,
na.indicator
, na.prop
, na.test