## variable representation for objects of class 'rcc'
# ----------------------------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
plotVar(nutri.res) #(default)
plotVar(nutri.res, comp = 1:2, cutoff = 0.5,
X.label = TRUE, Y.label = TRUE)
## variable representation for objects of class 'pls' or 'spls'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- liver.toxicity$clinic
toxicity.spls <- spls(X, Y, ncomp = 3, keepX = c(50, 50, 50),
keepY = c(10, 10, 10))
plotVar(toxicity.spls, keep.var = TRUE, Y.label = TRUE, cex = c(1,0.8))
## variable representation for objects of class 'splsda'
# ----------------------------------------------------
data(liver.toxicity)
X <- liver.toxicity$gene
Y <- as.factor(liver.toxicity$treatment[, 4])
ncomp <- 2
keepX <- rep(20, ncomp)
splsda.liver <- splsda(X, Y, ncomp = ncomp, keepX = keepX)
plotVar(splsda.liver, var.label = FALSE)
## variable representation for objects of class 'sgcca' (or 'rgcca')
# ----------------------------------------------------
data(nutrimouse)
# need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
# set up the data as list
data = list(nutrimouse$gene, nutrimouse$lipid,Y)
# set up the design matrix:
# with this design, gene expression and lipids are connected to the diet factor
# design = matrix(c(0,0,1,
# 0,0,1,
# 1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
# with this design, gene expression and lipids are connected to the diet factor
# and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the penalty parameters will need to be tuned
wrap.result.sgcca = wrapper.sgcca(data = data, design = design, penalty = c(.3,.3, 1),
ncomp = c(2, 2, 1),
scheme = "centroid", verbose = FALSE)
wrap.result.sgcca
#variables selected on component 1 for the two blocks:
selectVar(wrap.result.sgcca, comp = 1, block = c(1,2))$name.var
#variables selected on component 2 for each block:
selectVar(wrap.result.sgcca, comp = 2, block = c(1,2))$name.var
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), ncomp.select = c(1,1), labels = TRUE)
title(main = c('Variables selected on component 1 only'))
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), ncomp.select = c(2,2), labels = TRUE)
title(main = c('Variables selected on component 2 only'))
# -> this one shows the variables selected on both components
plotVar(wrap.result.sgcca, comp = c(1,2), block = c(1,2), labels = TRUE)
title(main = c('Variables selected on components 1 and 2'))
## variable representation for objects of class 'rgcca'
# ----------------------------------------------------
data(nutrimouse)
# need to unmap the Y factor diet
Y = unmap(nutrimouse$diet)
# set up the data as list
data = list(nutrimouse$gene, nutrimouse$lipid,Y)
# with this design, gene expression and lipids are connected to the diet factor
# design = matrix(c(0,0,1,
# 0,0,1,
# 1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
# with this design, gene expression and lipids are connected to the diet factor
# and gene expression and lipids are also connected
design = matrix(c(0,1,1,
1,0,1,
1,1,0), ncol = 3, nrow = 3, byrow = TRUE)
#note: the tau parameter is the regularization parameter
wrap.result.rgcca = wrapper.rgcca(data = data, design = design, tau = c(1, 1, 0),
ncomp = c(2, 2, 1),
scheme = "centroid", verbose = FALSE)
#wrap.result.rgcca
plotVar(wrap.result.rgcca, comp = c(1,2), block = c(1,2))
plotVar(wrap.result.rgcca, comp = c(1,2), block = c(1,2), labels = TRUE)
Run the code above in your browser using DataLab