# -----------------------
# jet colors
# ----------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.jet(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}
# -----------------------
# spectral colors
# ----------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.spectral(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}
# -----------------------
# GreenRed colors
# ----------------------
par(mfrow = c(3, 1))
z <- seq(-1, 1, length = 125)
for (n in c(11, 33, 125)) {
image(matrix(z, ncol = 1), col = color.GreenRed(n),
xaxt = 'n', yaxt = 'n', main = paste('n = ', n))
box()
par(usr = c(-1, 1, -1, 1))
axis(1, at = c(-1, 0, 1))
}
# # --------------------------------
# mixOmics colors
# # -------------------------------
data(nutrimouse)
X <- nutrimouse$lipid
Y <- nutrimouse$gene
nutri.res <- rcc(X, Y, ncomp = 3, lambda1 = 0.064, lambda2 = 0.008)
my.colors = color.mixo(1:5)
my.pch = ifelse(nutrimouse$genotype == 'wt', 16, 17)
#plotIndiv(nutri.res, ind.names = FALSE, group = my.colors, pch = my.pch, cex = 1.5)
Run the code above in your browser using DataLab