Learn R Programming

mixOmics (version 6.3.0)

mint.block.spls: NP-integration for integration with variable selection

Description

Function to integrate data sets measured on the same samples (N-integration) and to combine multiple independent studies (P-integration) using variants of sparse multi-group and generalised PLS with variable selection (unsupervised analysis).

Usage

mint.block.spls(X,
Y,
indY,
study,
ncomp = 2,
keepX,
keepY,
design,
scheme,
mode,
scale = TRUE,
init ,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
all.outputs = TRUE)

Arguments

X

A list of data sets (called 'blocks') measured on the same samples. Data in the list should be arranged in samples x variables, with samples order matching in all data sets.

Y

Matrix or vector response for a multivariate regression framework. Data should be continuous variables (see block.splsda for supervised classification and factor reponse)

indY

To supply if Y is missing, indicates the position of the matrix / vector response in the list X

study

factor indicating the membership of each sample to each of the studies being combined

ncomp

the number of components to include in the model. Default to 2.

keepX

A list of same length as X. Each entry is the number of variables to select in each of the blocks of X for each component. In the case where keepX.constraint is specified it should indicate the number of variables to select on the remaining components. By default all variables are kept in the model.

keepY

Only if Y is provided. Each entry is the number of variables to select in each of the blocks of Y for each component. In the case where keepX.constraint is specified it should indicate the number of variables to select on the remaining components. By default all variables are kept in the model.

design

numeric matrix of size (number of blocks in X) x (number of blocks in X) with 0 or 1 values. A value of 1 (0) indicates a relationship (no relationship) between the blocks to be modelled. If Y is provided instead of indY, the design matrix is changed to include relationships to Y.

scheme

Either "horst", "factorial" or "centroid". Default = horst, see reference.

mode

character string. What type of algorithm to use, (partially) matching one of "regression", "canonical", "invariant" or "classic". See Details.

scale

boleean. If scale = TRUE, each block is standardized to zero means and unit variances (default: TRUE)

init

Mode of initialization use in the algorithm, either by Singular Value Decompostion of the product of each block of X with Y ("svd") or each block independently ("svd.single"). Default = svd.single.

tol

Convergence stopping value.

max.iter

integer, the maximum number of iterations.

near.zero.var

boolean, see the internal nearZeroVar function (should be set to TRUE in particular for data with many zero values). Setting this argument to FALSE (when appropriate) will speed up the computations. Default value is FALSE

all.outputs

boolean. Computation can be faster when some specific (and non-essential) outputs are not calculated. Default = TRUE.

Value

mint.block.spls returns an object of class "mint.spls", "block.spls", a list that contains the following components:

X

the centered and standardized original predictor matrix.

Y

the centered and standardized original response vector or matrix.

ncomp

the number of components included in the model for each block.

mode

the algorithm used to fit the model.

mat.c

matrix of coefficients from the regression of X / residual matrices X on the X-variates, to be used internally by predict.

variates

list containing the \(X\) and \(Y\) variates.

loadings

list containing the estimated loadings for the variates.

names

list containing the names to be used for individuals and variables.

nzv

list containing the zero- or near-zero predictors information.

tol

the tolerance used in the iterative algorithm, used for subsequent S3 methods

max.iter

the maximum number of iterations, used for subsequent S3 methods

iter

Number of iterations of the algorthm for each component

Details

The function fits sparse multi-group generalised PLS models with a specified number of ncomp components. An outcome needs to be provided, either by Y or by its position indY in the list of blocks X.

Multi (continuous)response are supported. X and Y can contain missing values. Missing values are handled by being disregarded during the cross product computations in the algorithm block.pls without having to delete rows with missing data. Alternatively, missing data can be imputed prior using the nipals function.

The type of algorithm to use is specified with the mode argument. Four PLS algorithms are available: PLS regression ("regression"), PLS canonical analysis ("canonical"), redundancy analysis ("invariant") and the classical PLS algorithm ("classic") (see References and more details in ?pls).

Constraint model (constraint=TRUE). The model is run on the optimal list of selected features keepX.constraint from the previous components, as opposed to considering only a specified number of features keepX.

References

Rohart F, Eslami A, Matigian, N, Bougeard S, Le Cao K-A (2017). MINT: A multivariate integrative approach to identify a reproducible biomarker signature across multiple experiments and platforms. BMC Bioinformatics 18:128.

Eslami, A., Qannari, E. M., Kohler, A., and Bougeard, S. (2014). Algorithms for multi-group PLS. J. Chemometrics, 28(3), 192-201.

See Also

spls, summary, plotIndiv, plotVar, predict, perf, mint.block.pls, mint.block.plsda, mint.block.splsda and http://www.mixOmics.org/mixMINT for more details.

Examples

Run this code
# NOT RUN {
# we will soon provide more examples on our website (data too large to be included in the package
# and still in active development)
# }

Run the code above in your browser using DataLab