Rdocumentation
powered by
Learn R Programming
mixdist (version 0.5-5)
Finite Mixture Distribution Models
Description
Fit finite mixture distribution models to grouped data and conditional data by maximum likelihood using a combination of a Newton-type algorithm and the EM algorithm.
Copy Link
Link to current version
Version
Version
0.5-5
0.5-4
0.5-3
0.5-2
Install
install.packages('mixdist')
Monthly Downloads
598
Version
0.5-5
License
GPL (>= 2)
Homepage
https://www.r-project.org/
Maintainer
Peter Macdonald
Last Published
June 4th, 2018
Functions in mixdist (0.5-5)
Search all functions
mixparam
Construct Starting Values for Parameters
poisdat
Grouped Poisson Data
pikepar
Starting Values of Parameters for the Pike Data
plot.mix
Mix Object Plotting
summary.mix
Summarizing Mixture Model Fits
mixpar2theta
Find the Parameters to be Estimated
pike65sg
Length-Frequency Data with Subsamples for Heming Lake Pike
pike65
Length-Frequency Data for Heming Lake Pike
pearsonpar
Starting Values of Parameters for the Pearson's Data
plot.mixdata
Mixdata Object Plotting
print.mix
Print Mix Object
weibullparinv
Compute the Mean and Standard Deviation of Weibull Distribution
pikdat5
Heming Lake Pike Data
testconstr
Check Constraints
poispar
Starting Values of Parameters for the Poisson Data Set
weibullpar
Compute Shape and Scale Parameters for Weibull Distribution
testpar
Check Parameters
pikeraw
A Sample of Pike Lengths
conditdat
Add Conditional Data to Grouped Data
bindat
Grouped Binomial Data
binpar
Starting Values of Parameters for the Binomial Data Set
anova.mix
ANOVA Tables for Mixture Model Objects
groupstats
Estimate Parameters of One-Component Mixture Distribution
fiftn80
A Mixed Data with Fifteen Normal Components
normals
Scale Mixture Data with Three Normal Components
mixtheta2par
Compute All of Parameters from the Estimated Parameters
mixdata
Mixed Data
mixgroup
Construct Grouped Data from Raw Data
mix
Estimate Parameters of Mixture Distributions
coef.mix
Extract Mixture Model Coefficients
expdat
A Mixture Data of Three Exponential Distributions
fitted.mix
Compute Mixture Model Fitted Values
cassie
Cassie's Length-Frequency Example
mixconstr
Construct Constraints on Parameters
grpintprob
Compute Probabilities of an Observation Falling into a Grouping Interval
pearson
Karl Pearson's Crab Data