Search for the best fitting for number of cluster from g.min
to g.max
for a selected family
and criteria
for both univariate and multivariate
distributions.
smsn.search(y, nu,
g.min = 1, g.max = 3,
family = "Skew.normal", criteria = "bic",
error = 0.0001, iter.max = 100,
calc.im = FALSE, uni.Gama = FALSE, kmeans.param = NULL, ...)
the response vector(matrix)
the parameter of the scale variable (vector or scalar) of the SMSN family (kurtosis parameter). It is necessary to all distributions. For the "Skew.cn" must be a vector of length 2 and values in (0,1)
the minimum number of cluster to be modeled
the maximum number of cluster to be modeled
distribution famility to be used in fitting ("t", "Skew.t", "Skew.nc", "Skew.slash", "Skew.normal", "Normal")
the selection criteria method to be used ("aic", "bic", "edc", "icl")
the covergence maximum error
the maximum number of iterations of the EM algorithm
if TRUE, the infomation matrix is calculated and the starndard erros are reported
if TRUE, the Gamma parameters are restricted to be the same for all clusters (Only valid in the multivariate case, p>1)
a list with alternative parameters for the kmeans function when generating initial values, list(iter.max = 10, n.start = 1, algorithm = "Hartigan-Wong")
other parameters for the hist function
Estimated values of the location, scale, skewness and kurtosis parameter from the optimum number of clusters.
# NOT RUN {
## see \code{\link{bmi}} and \code{\link{faithful}}
# }
Run the code above in your browser using DataLab