Learn R Programming

mixtools (version 2.0.0)

summary.spRMM: Summarizing fits from Stochastic EM algorithm for semiparametric scaled mixture of censored data

Description

summary method for class spRMM.

Usage

# S3 method for spRMM
summary(object, digits = 6, ...)

Value

The function summary.spRMM prints the final loglikelihood value at the solution as well as The estimated mixing weights and the scaling parameter.

Arguments

object

an object of class spRMM such as a result of a call to spRMM_SEM

digits

Significant digits for printing values

...

Additional parameters passed to print.

Author

Didier Chauveau

Details

summary.spRMM prints scalar parameter estimates for a fitted mixture model: each component weight and the scaling factor, see reference below. The functional (nonparametric) estimates of survival and hazard rate funcions can be obtained using plotspRMM.

References

See Also

Function for plotting functional (nonparametric) estimates: plotspRMM.

Other models and algorithms for censored lifetime data (name convention is model_algorithm): expRMM_EM, weibullRMM_SEM.

Examples

Run this code
# See example(spRMM_SEM)

Run the code above in your browser using DataLab