# Reproduce the plot on page 57 of FOCUS (2014)
plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2),
from = 0, to = 100, ylim = c(0, 100),
xlab = "Time", ylab = "Residue")
plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4),
from = 0, to = 100, add = TRUE, lty = 2, col = 2)
plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8),
from = 0, to = 100, add = TRUE, lty = 3, col = 3)
plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2),
from = 0, to = 100, add = TRUE, lty = 4, col = 4)
plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2),
from = 0, to = 100, add = TRUE, lty = 5, col = 5)
legend("topright", inset = 0.05,
legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08),
", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)),
lty = 1:5, col = 1:5)
# Fit with synthetic data
logistic <- mkinmod(parent = mkinsub("logistic"))
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2)
d_logistic <- mkinpredict(logistic,
parms_logistic, c(parent = 100),
sampling_times)
d_2_1 <- add_err(d_logistic,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]]
m <- mkinfit("logistic", d_2_1, quiet = TRUE)
plot_sep(m)
summary(m)$bpar
endpoints(m)$distimes
Run the code above in your browser using DataLab