Learn R Programming

mkin (version 1.2.6)

logistic.solution: Logistic kinetics

Description

Function describing exponential decline from a defined starting value, with an increasing rate constant, supposedly caused by microbial growth

Usage

logistic.solution(t, parent_0, kmax, k0, r)

Value

The value of the response variable at time t.

Arguments

t

Time.

parent_0

Starting value for the response variable at time zero.

kmax

Maximum rate constant.

k0

Minimum rate constant effective at time zero.

r

Growth rate of the increase in the rate constant.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version 1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), HS.solution(), IORE.solution(), SFO.solution(), SFORB.solution()

Examples

Run this code

  # Reproduce the plot on page 57 of FOCUS (2014)
  plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2),
       from = 0, to = 100, ylim = c(0, 100),
       xlab = "Time", ylab = "Residue")
  plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4),
       from = 0, to = 100, add = TRUE, lty = 2, col = 2)
  plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8),
       from = 0, to = 100, add = TRUE, lty = 3, col = 3)
  plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2),
       from = 0, to = 100, add = TRUE, lty = 4, col = 4)
  plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2),
       from = 0, to = 100, add = TRUE, lty = 5, col = 5)
  legend("topright", inset = 0.05,
         legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08),
                         ", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)),
         lty = 1:5, col = 1:5)

  # Fit with synthetic data
  logistic <- mkinmod(parent = mkinsub("logistic"))

  sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
  parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2)
  d_logistic <- mkinpredict(logistic,
    parms_logistic, c(parent = 100),
    sampling_times)
  d_2_1 <- add_err(d_logistic,
    sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
    n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]]

  m <- mkinfit("logistic", d_2_1, quiet = TRUE)
  plot_sep(m)
  summary(m)$bpar
  endpoints(m)$distimes

Run the code above in your browser using DataLab