sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
n_biphasic <- 8
err_1 = list(const = 1, prop = 0.07)
DFOP_SFO <- mkinmod(
parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"),
quiet = TRUE)
set.seed(123456)
log_sd <- 0.3
syn_biphasic_parms <- as.matrix(data.frame(
k1 = rlnorm(n_biphasic, log(0.05), log_sd),
k2 = rlnorm(n_biphasic, log(0.01), log_sd),
g = plogis(rnorm(n_biphasic, 0, log_sd)),
f_parent_to_m1 = plogis(rnorm(n_biphasic, 0, log_sd)),
k_m1 = rlnorm(n_biphasic, log(0.002), log_sd)))
ds_biphasic_mean <- lapply(1:n_biphasic,
function(i) {
mkinpredict(DFOP_SFO, syn_biphasic_parms[i, ],
c(parent = 100, m1 = 0), sampling_times)
}
)
set.seed(123456L)
ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),
n = 1, secondary = "m1")[[1]]
})
if (FALSE) {
f_mmkin <- mmkin(list("DFOP-SFO" = DFOP_SFO), ds_biphasic, error_model = "tc", quiet = TRUE)
f_mixed <- mixed(f_mmkin)
print(f_mixed)
plot(f_mixed)
}
Run the code above in your browser using DataLab