## Not run:
# # These are similar to the MLMC tests for the MCQMC06 paper
# # using a Milstein discretisation with 2^l timesteps on level l
# #
# # The figures are slightly different due to:
# # -- change in MSE split
# # -- change in cost calculation
# # -- different random number generation
# # -- switch to S_0=100
#
# M <- 2 # refinement cost factor
# N0 <- 200 # initial samples on coarse levels
# Lmin <- 2 # minimum refinement level
# Lmax <- 10 # maximum refinement level
#
# test.res <- list()
# for(option in 1:5) {
# if(option==1) {
# cat("\n ---- Computing European call ---- \n")
# N <- 20000 # samples for convergence tests
# L <- 8 # levels for convergence tests
# Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
# } else if(option==2) {
# cat("\n ---- Computing Asian call ---- \n")
# N <- 20000 # samples for convergence tests
# L <- 8 # levels for convergence tests
# Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
# } else if(option==3) {
# cat("\n ---- Computing lookback call ---- \n")
# N <- 20000 # samples for convergence tests
# L <- 10 # levels for convergence tests
# Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
# } else if(option==4) {
# cat("\n ---- Computing digital call ---- \n")
# N <- 200000 # samples for convergence tests
# L <- 8 # levels for convergence tests
# Eps <- c(0.01, 0.02, 0.05, 0.1, 0.2)
# } else if(option==5) {
# cat("\n ---- Computing barrier call ---- \n")
# N <- 200000 # samples for convergence tests
# L <- 8 # levels for convergence tests
# Eps <- c(0.005, 0.01, 0.02, 0.05, 0.1)
# }
#
# test.res[[option]] <- mlmc.test(mcqmc06_l, M, N, L, N0, Eps, Lmin, Lmax, option=option)
#
# # plot results
# plot(test.res[[option]])
# }
# ## End(Not run)
# The level sampler can be called directly to retrieve the relevant level sums:
mcqmc06_l(l=7, N=10, option=1)
Run the code above in your browser using DataLab