Learn R Programming

mlogit (version 1.1-2)

miscmethods.mlogit: Methods for mlogit objects

Description

Miscellaneous methods for `mlogit` objects.

Usage

# S3 method for mlogit
residuals(object, outcome = TRUE, ...)

# S3 method for mlogit df.residual(object, ...)

# S3 method for mlogit terms(x, ...)

# S3 method for mlogit model.matrix(object, ...)

model.response.mlogit(object, ...)

# S3 method for mlogit update(object, new, ...)

# S3 method for mlogit print( x, digits = max(3, getOption("digits") - 2), width = getOption("width"), ... )

# S3 method for mlogit logLik(object, ...)

# S3 method for mlogit summary(object, ..., type = c("chol", "cov", "cor"))

# S3 method for summary.mlogit print( x, digits = max(3, getOption("digits") - 2), width = getOption("width"), ... )

# S3 method for mlogit idx(x, n = NULL, m = NULL)

# S3 method for mlogit idx_name(x, n = NULL, m = NULL)

# S3 method for mlogit predict(object, newdata = NULL, returnData = FALSE, ...)

# S3 method for mlogit fitted( object, type = c("outcome", "probabilities", "linpred", "parameters"), outcome = NULL, ... )

# S3 method for mlogit coef( object, subset = c("all", "iv", "sig", "sd", "sp", "chol"), fixed = FALSE, ... )

# S3 method for summary.mlogit coef(object, ...)

Arguments

outcome

a boolean which indicates, for the `fitted` and the `residuals` methods whether a matrix (for each choice, one value for each alternative) or a vector (for each choice, only a value for the alternative chosen) should be returned,

...

further arguments.

x, object

an object of class `mlogit`

new

an updated formula for the `update` method,

digits

the number of digits,

width

the width of the printing,

type

one of `outcome` (probability of the chosen alternative), `probabilities` (probabilities for all the alternatives), `parameters` for individual-level random parameters for the fitted method, how the correlated random parameters should be displayed : `"chol"` for the estimated parameters (the elements of the Cholesky decomposition matrix), `"cov"` for the covariance matrix and `"cor"` for the correlation matrix and the standard deviations,

n, m

see [dfidx::idx()]

newdata

a `data.frame` for the `predict` method,

returnData

for the `predict` method, if `TRUE`, the data is returned as an attribute,

subset

an optional vector of coefficients to extract for the `coef` method,

fixed

if `FALSE` (the default), constant coefficients are not returned,