# For example, the following command trains a model on the data "data" and
# responses "responses"with center set to true and scale set to false (so,
# Bayesian linear regression is being solved, and then the model is saved to
# "blr_model":
if (FALSE) {
output <- bayesian_linear_regression(input=data, responses=responses,
center=1, scale=0)
blr_model <- output$output_model
}
# The following command uses the "blr_model" to provide predicted responses
# for the data "test" and save those responses to "test_predictions":
if (FALSE) {
output <- bayesian_linear_regression(input_model=blr_model, test=test)
test_predictions <- output$predictions
}
# Because the estimator computes a predictive distribution instead of a
# simple point estimate, the "stds" parameter allows one to save the
# prediction uncertainties:
if (FALSE) {
output <- bayesian_linear_regression(input_model=blr_model, test=test)
test_predictions <- output$predictions
stds <- output$stds
}
Run the code above in your browser using DataLab