generateFilterValuesData
.
Features are then selected via select
and val
.filterFeatures(task, method = "randomForestSRC.rfsrc", fval = NULL,
perc = NULL, abs = NULL, threshold = NULL, mandatory.feat = NULL, ...)
Task
]
The task.character(1)
]
See listFilterMethods
.
Default is “randomForestSRC.rfsrc”.FilterValues
]
Result of generateFilterValuesData
.
If you pass this, the filter values in the object are used for feature filtering.
method
and ...
are ignored then.
Default is NULL
and not used.numeric(1)
]
If set, select perc
*100 top scoring features.
Mutually exclusive with arguments abs
and threshold
.numeric(1)
]
If set, select abs
top scoring features.
Mutually exclusive with arguments perc
and threshold
.numeric(1)
]
If set, select features whose score exceeds threshold
.
Mutually exclusive with arguments perc
and abs
.character
]
Mandatory features which are always included regardless of their scoresTask
].generateFilterValuesData
,
getFilterValues
,
getFilteredFeatures
,
makeFilterWrapper
,
plotFilterValuesGGVIS
,
plotFilterValues