removeConstantFeatures
.makeRemoveConstantFeaturesWrapper(learner, perc = 0,
dont.rm = character(0L), na.ignore = FALSE,
tol = .Machine$double.eps^0.5)
Learner
| character(1)
]
The learner.
If you pass a string the learner will be created via makeLearner
.numeric(1)
]
The percentage of a feature values in [0, 1) that must differ from the mode value.
Default is 0, which means only constant features with exactly one observed level are removed.character
]
Names of the columns which must not be deleted.
Default is no columns.logical(1)
]
Should NAs be ignored in the percentage calculation?
(Or should they be treated as a single, extra level in the percentage calculation?)
Note that if the feature has only missing values, it is always removed.
Default is FALSE
.numeric(1)
]
Numerical tolerance to treat two numbers as equal.
Variables stored as double
will get rounded accordingly before computing the mode.
Default is sqrt(.Maschine$double.eps)
.Learner
].makeBaggingWrapper
,
makeConstantClassWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeUndersampleWrapper
,
makeWeightedClassesWrapper