oversample
or undersample
before every model fit. Note that observation weights do not influence the sampling and are simply passed
down to the next learner.makeUndersampleWrapper(learner, usw.rate = 1, usw.cl = NULL)makeOversampleWrapper(learner, osw.rate = 1, osw.cl = NULL)
Learner
| character(1)
]
The learner.
If you pass a string the learner will be created via makeLearner
.numeric(1)
]
Factor to downsample a class. Must be between 0 and 1,
where 1 means no downsampling, 0.5 implies reduction to 50 percent
and 0 would imply reduction to 0 observations.
Default is 1.character(1)
]
Class that should be undersampled.
Default is NULL
, which means the larger one.numeric(1)
]
Factor to oversample a class. Must be between 1 and Inf
,
where 1 means no oversampling and 2 would mean doubling the class size.
Default is 1.character(1)
]
Class that should be oversampled.
Default is NULL
, which means the smaller one.Learner
].makeOverBaggingWrapper
,
oversample
, smote
Other wrapper: makeBaggingWrapper
,
makeConstantClassWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeRemoveConstantFeaturesWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeWeightedClassesWrapper