Learn R Programming

mlr (version 2.10)

plotBMRBoxplots: Create box or violin plots for a BenchmarkResult.

Description

Plots box or violin plots for a selected measure across all iterations of the resampling strategy, faceted by the task.id.

Usage

plotBMRBoxplots(bmr, measure = NULL, style = "box", order.lrns = NULL,
  order.tsks = NULL, pretty.names = TRUE, facet.wrap.nrow = NULL,
  facet.wrap.ncol = NULL)

Arguments

bmr
[BenchmarkResult] Benchmark result.
measure
[Measure] Performance measure. Default is the first measure used in the benchmark experiment.
style
[character(1)] Type of plot, can be “box” for a boxplot or “violin” for a violin plot. Default is “box”.
order.lrns
[character(n.learners)] Character vector with learner.ids in new order.
order.tsks
[character(n.tasks)] Character vector with task.ids in new order.
pretty.names
[logical(1)] Whether to use the Measure name and the Learner short name instead of the id. Default is TRUE.
facet.wrap.nrow, facet.wrap.ncol
[integer()] Number of rows and columns for facetting. Default for both is NULL. In this case ggplot's facet_wrap will choose the layout itself.

Value

ggplot2 plot object.

See Also

Other plot: plotBMRRanksAsBarChart, plotBMRSummary, plotCalibration, plotCritDifferences, plotFilterValuesGGVIS, plotLearningCurveGGVIS, plotLearningCurve, plotPartialDependenceGGVIS, plotPartialDependence, plotROCCurves, plotResiduals, plotThreshVsPerfGGVIS, plotThreshVsPerf Other benchmark: BenchmarkResult, benchmark, convertBMRToRankMatrix, friedmanPostHocTestBMR, friedmanTestBMR, generateCritDifferencesData, getBMRAggrPerformances, getBMRFeatSelResults, getBMRFilteredFeatures, getBMRLearnerIds, getBMRLearnerShortNames, getBMRLearners, getBMRMeasureIds, getBMRMeasures, getBMRModels, getBMRPerformances, getBMRPredictions, getBMRTaskDescriptions, getBMRTaskIds, getBMRTuneResults, plotBMRRanksAsBarChart, plotBMRSummary, plotCritDifferences

Examples

Run this code
# see benchmark

Run the code above in your browser using DataLab