pos
for details. In all plot variants the ranks of the learning algorithms are displayed on
the x-axis. Areas are always colored according to the learner.id
.plotBMRRanksAsBarChart(bmr, measure = NULL, ties.method = "average",
aggregation = "default", pos = "stack", order.lrns = NULL,
order.tsks = NULL, pretty.names = TRUE)
BenchmarkResult
]
Benchmark result.Measure
]
Performance measure.
Default is the first measure used in the benchmark experiment.character(1)
]
See rank
for details.character(1)
]
“mean” or “default”. See getBMRAggrPerformances
for details on “default”.character(1)
]
Optionally set how the bars are positioned in ggplot2.
Ranks are plotted on the x-axis.
“tile” plots a heat map with task
as the y-axis.
Allows identification of the performance in a special task.
“stack” plots a stacked bar plot.
Allows for comparison of learners within and and across ranks.
“dodge” plots a bar plot with bars next to each other instead
of stacked bars.character(n.learners)
]
Character vector with learner.ids
in new order.character(n.tasks)
]
Character vector with task.ids
in new order.logical{1}
]
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE
.plotBMRBoxplots
,
plotBMRSummary
,
plotCalibration
,
plotCritDifferences
,
plotFilterValuesGGVIS
,
plotLearningCurveGGVIS
,
plotLearningCurve
,
plotPartialDependenceGGVIS
,
plotPartialDependence
,
plotROCCurves
, plotResiduals
,
plotThreshVsPerfGGVIS
,
plotThreshVsPerf
Other benchmark: BenchmarkResult
,
benchmark
,
convertBMRToRankMatrix
,
friedmanPostHocTestBMR
,
friedmanTestBMR
,
generateCritDifferencesData
,
getBMRAggrPerformances
,
getBMRFeatSelResults
,
getBMRFilteredFeatures
,
getBMRLearnerIds
,
getBMRLearnerShortNames
,
getBMRLearners
,
getBMRMeasureIds
,
getBMRMeasures
, getBMRModels
,
getBMRPerformances
,
getBMRPredictions
,
getBMRTaskDescriptions
,
getBMRTaskIds
,
getBMRTuneResults
,
plotBMRBoxplots
,
plotBMRSummary
,
plotCritDifferences