scale_x_log10
.plotBMRSummary(bmr, measure = NULL, trafo = "none", order.tsks = NULL,
pointsize = 4L, jitter = 0.05, pretty.names = TRUE)
BenchmarkResult
]
Benchmark result.Measure
]
Performance measure.
Default is the first measure used in the benchmark experiment.character(1)
]
Currently either “none” or “rank”, the latter performing a rank transformation
(with average handling of ties) of the scores per task.
NB: You can add always add scale_x_log10
to the result to put scores on a log scale.
Default is “none”.character(n.tasks)
]
Character vector with task.ids
in new order.numeric(1)
]
Point size for ggplot2 geom_point
for data points.
Default is 4.numeric(1)
]
Small vertical jitter to deal with overplotting in case of equal scores.
Default is 0.05.logical{1}
]
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE
.BenchmarkResult
,
benchmark
,
convertBMRToRankMatrix
,
friedmanPostHocTestBMR
,
friedmanTestBMR
,
generateCritDifferencesData
,
getBMRAggrPerformances
,
getBMRFeatSelResults
,
getBMRFilteredFeatures
,
getBMRLearnerIds
,
getBMRLearnerShortNames
,
getBMRLearners
,
getBMRMeasureIds
,
getBMRMeasures
, getBMRModels
,
getBMRPerformances
,
getBMRPredictions
,
getBMRTaskDescriptions
,
getBMRTaskIds
,
getBMRTuneResults
,
plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotCritDifferences
Other plot: plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotCalibration
,
plotCritDifferences
,
plotFilterValuesGGVIS
,
plotLearningCurveGGVIS
,
plotLearningCurve
,
plotPartialDependenceGGVIS
,
plotPartialDependence
,
plotROCCurves
, plotResiduals
,
plotThreshVsPerfGGVIS
,
plotThreshVsPerf