Learn R Programming

mlr (version 2.10)

tuneParams: Hyperparameter tuning.

Description

Optimizes the hyperparameters of a learner. Allows for different optimization methods, such as grid search, evolutionary strategies, iterated F-race, etc. You can select such an algorithm (and its settings) by passing a corresponding control object. For a complete list of implemented algorithms look at TuneControl. Multi-criteria tuning can be done with tuneParamsMultiCrit.

Usage

tuneParams(learner, task, resampling, measures, par.set, control,
  show.info = getMlrOption("show.info"))

Arguments

learner
[Learner | character(1)] The learner. If you pass a string the learner will be created via makeLearner.
task
[Task] The task.
resampling
[ResampleInstance | ResampleDesc] Resampling strategy to evaluate points in hyperparameter space. If you pass a description, it is instantiated once at the beginning by default, so all points are evaluated on the same training/test sets. If you want to change that behavior, look at TuneControl.
measures
[list of Measure | Measure] Performance measures to evaluate. The first measure, aggregated by the first aggregation function is optimized, others are simply evaluated. Default is the default measure for the task, see here getDefaultMeasure.
par.set
[ParamSet] Collection of parameters and their constraints for optimization. Dependent parameters with a requires field must use quote and not expression to define it.
control
[TuneControl] Control object for search method. Also selects the optimization algorithm for tuning.
show.info
[logical(1)] Print verbose output on console? Default is set via configureMlr.

Value

[TuneResult].

See Also

generateHyperParsEffectData Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneWrapper, tuneThreshold

Examples

Run this code
# a grid search for an SVM (with a tiny number of points...)
# note how easily we can optimize on a log-scale
ps = makeParamSet(
  makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
  makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x)
)
ctrl = makeTuneControlGrid(resolution = 2L)
rdesc = makeResampleDesc("CV", iters = 2L)
res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
print(res)
# access data for all evaluated points
print(head(as.data.frame(res$opt.path)))
print(head(as.data.frame(res$opt.path, trafo = TRUE)))
# access data for all evaluated points - alternative
print(head(generateHyperParsEffectData(res)))
print(head(generateHyperParsEffectData(res, trafo = TRUE)))

## Not run: ------------------------------------
# # we optimize the SVM over 3 kernels simultanously
# # note how we use dependent params (requires = ...) and iterated F-racing here
# ps = makeParamSet(
#   makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x),
#   makeDiscreteParam("kernel", values = c("vanilladot", "polydot", "rbfdot")),
#   makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x,
#     requires = quote(kernel == "rbfdot")),
#   makeIntegerParam("degree", lower = 2L, upper = 5L,
#     requires = quote(kernel == "polydot"))
# )
# print(ps)
# ctrl = makeTuneControlIrace(maxExperiments = 5, nbIterations = 1, minNbSurvival = 1)
# rdesc = makeResampleDesc("Holdout")
# res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps, control = ctrl)
# print(res)
# print(head(as.data.frame(res$opt.path)))
# 
# # include the training set performance as well
# rdesc = makeResampleDesc("Holdout", predict = "both")
# res = tuneParams("classif.ksvm", iris.task, rdesc, par.set = ps,
#   control = ctrl, measures = list(mmce, setAggregation(mmce, train.mean)))
# print(res)
# print(head(as.data.frame(res$opt.path)))
## ---------------------------------------------

Run the code above in your browser using DataLab