optimizeSubInts
for normal binary class problems and cma_es
for multiclass and multilabel problems.tuneThreshold(pred, measure, task, model, nsub = 20L, control = list())
Prediction
]
Prediction object.Measure
]
Performance measure to optimize.
Default is the default measure for the task.Task
]
Learning task. Rarely neeeded,
only when required for the performance measure.WrappedModel
]
Fitted model. Rarely neeeded,
only when required for the performance measure.integer(1)
]
Passed to optimizeSubInts
for 2class problems.
Default is 20.list
]
Control object for cma_es
when used.
Default is empty list.list
]. A named list with with the following components:
th
is the optimal threshold, perf
the performance value.TuneControl
,
getNestedTuneResultsOptPathDf
,
getNestedTuneResultsX
,
getTuneResult
,
makeModelMultiplexerParamSet
,
makeModelMultiplexer
,
makeTuneWrapper
, tuneParams