Fuses a base learner with a preprocessing method. Creates a learner object, which can be used like any other learner object, but which internally preprocesses the data as requested. If the train or predict function is called on data / a task, the preprocessing is always performed automatically.
makePreprocWrapper(learner, train, predict, par.set = makeParamSet(),
par.vals = list())
(Learner | character(1)
)
The learner.
If you pass a string the learner will be created via makeLearner.
(function(data, target, args)
)
Function to preprocess the data before training.
target
is a string and denotes the target variable in data
.
args
is a list of further arguments and parameters to influence the
preprocessing.
Must return a list(data, control)
, where data
is the preprocessed
data and control
stores all information necessary to do the preprocessing
before predictions.
(function(data, target, args, control)
)
Function to preprocess the data before prediction.
target
is a string and denotes the target variable in data
.
args
are the args that were passed to train
.
control
is the object you returned in train
.
Must return the processed data.
(ParamHelpers::ParamSet)
Parameter set of ParamHelpers::LearnerParam objects to describe the
parameters in args
.
Default is empty set.
(list)
Named list of default values for params in args
respectively par.set
.
Default is empty list.
(Learner).
Other wrapper: makeBaggingWrapper
,
makeClassificationViaRegressionWrapper
,
makeConstantClassWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeDummyFeaturesWrapper
,
makeExtractFDAFeatsWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makeRemoveConstantFeaturesWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeUndersampleWrapper
,
makeWeightedClassesWrapper