Creates a scatter plot, where each line refers to a task. On that line the aggregated scores for all learners are plotted, for that task. Optionally, you can apply a rank transformation or just use one of ggplot2's transformations like ggplot2::scale_x_log10.
plotBMRSummary(bmr, measure = NULL, trafo = "none", order.tsks = NULL,
pointsize = 4L, jitter = 0.05, pretty.names = TRUE)
(BenchmarkResult) Benchmark result.
(Measure) Performance measure. Default is the first measure used in the benchmark experiment.
(character(1)
)
Currently either “none” or “rank”, the latter performing a rank transformation
(with average handling of ties) of the scores per task.
NB: You can add always add ggplot2::scale_x_log10 to the result to put scores on a log scale.
Default is “none”.
(character(n.tasks)
)
Character vector with task.ids
in new order.
(numeric(1)
)
Point size for ggplot2 ggplot2::geom_point for data points.
Default is 4.
(numeric(1)
)
Small vertical jitter to deal with overplotting in case of equal scores.
Default is 0.05.
(logical(1)
)
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE
.
ggplot2 plot object.
Other benchmark: BenchmarkResult
,
batchmark
, benchmark
,
convertBMRToRankMatrix
,
friedmanPostHocTestBMR
,
friedmanTestBMR
,
generateCritDifferencesData
,
getBMRAggrPerformances
,
getBMRFeatSelResults
,
getBMRFilteredFeatures
,
getBMRLearnerIds
,
getBMRLearnerShortNames
,
getBMRLearners
,
getBMRMeasureIds
,
getBMRMeasures
, getBMRModels
,
getBMRPerformances
,
getBMRPredictions
,
getBMRTaskDescs
,
getBMRTaskIds
,
getBMRTuneResults
,
plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotCritDifferences
,
reduceBatchmarkResults
Other plot: plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotCalibration
,
plotCritDifferences
,
plotLearningCurve
,
plotPartialDependence
,
plotROCCurves
, plotResiduals
,
plotThreshVsPerf
# NOT RUN {
# see benchmark
# }
Run the code above in your browser using DataLab