This creates a BenchmarkResult from a batchtools::ExperimentRegistry. To setup the benchmark have a look at batchmark.
reduceBatchmarkResults(ids = NULL, keep.pred = TRUE,
keep.extract = FALSE, show.info = getMlrOption("show.info"),
reg = batchtools::getDefaultRegistry())
(data.frame or integer) A base::data.frame (or data.table::data.table) with a column named “job.id”. Alternatively, you may also pass a vector of integerish job ids. If not set, defaults to all successfully terminated jobs (return value of batchtools::findDone.
(logical(1)
)
Keep the prediction data in the pred
slot of the result object.
If you do many experiments (on larger data sets) these objects might unnecessarily increase
object size / mem usage, if you do not really need them.
The default is set to TRUE
.
(logical(1)
)
Keep the extract
slot of the result object. When creating a lot of
benchmark results with extensive tuning, the resulting R objects can become
very large in size. That is why the tuning results stored in the extract
slot are removed by default (keep.extract = FALSE
). Note that when
keep.extract = FALSE
you will not be able to conduct analysis in the
tuning results.
(logical(1)
)
Print verbose output on console?
Default is set via configureMlr.
(batchtools::ExperimentRegistry) Registry, created by batchtools::makeExperimentRegistry. If not explicitly passed, uses the last created registry.
Other benchmark: BenchmarkResult
,
batchmark
, benchmark
,
convertBMRToRankMatrix
,
friedmanPostHocTestBMR
,
friedmanTestBMR
,
generateCritDifferencesData
,
getBMRAggrPerformances
,
getBMRFeatSelResults
,
getBMRFilteredFeatures
,
getBMRLearnerIds
,
getBMRLearnerShortNames
,
getBMRLearners
,
getBMRMeasureIds
,
getBMRMeasures
, getBMRModels
,
getBMRPerformances
,
getBMRPredictions
,
getBMRTaskDescs
,
getBMRTaskIds
,
getBMRTuneResults
,
plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotBMRSummary
,
plotCritDifferences