Performs a stats::friedman.test for a selected measure. The null hypothesis is that apart from an effect of the different (Task), the location parameter (aggregated performance measure) is the same for each Learner. Note that benchmark results for at least two learners on at least two tasks are required.
friedmanTestBMR(bmr, measure = NULL, aggregation = "default")
(BenchmarkResult) Benchmark result.
(Measure) Performance measure. Default is the first measure used in the benchmark experiment.
(character(1)
)
“mean” or “default”. See getBMRAggrPerformances
for details on “default”.
(htest
): See stats::friedman.test for details.
Other benchmark:
BenchmarkResult
,
batchmark()
,
benchmark()
,
convertBMRToRankMatrix()
,
friedmanPostHocTestBMR()
,
generateCritDifferencesData()
,
getBMRAggrPerformances()
,
getBMRFeatSelResults()
,
getBMRFilteredFeatures()
,
getBMRLearnerIds()
,
getBMRLearnerShortNames()
,
getBMRLearners()
,
getBMRMeasureIds()
,
getBMRMeasures()
,
getBMRModels()
,
getBMRPerformances()
,
getBMRPredictions()
,
getBMRTaskDescs()
,
getBMRTaskIds()
,
getBMRTuneResults()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
plotCritDifferences()
,
reduceBatchmarkResults()
# NOT RUN {
# see benchmark
# }
Run the code above in your browser using DataLab