Completely pre-specifiy a data.frame
of design points to be evaluated
during tuning. All kinds of parameter types can be handled.
makeTuneControlDesign(
same.resampling.instance = TRUE,
impute.val = NULL,
design = NULL,
tune.threshold = FALSE,
tune.threshold.args = list(),
log.fun = "default"
)
(logical(1)
)
Should the same resampling instance be used for all evaluations to reduce variance?
Default is TRUE
.
(numeric)
If something goes wrong during optimization (e.g. the learner crashes),
this value is fed back to the tuner, so the tuning algorithm does not abort.
It is not stored in the optimization path, an NA and a corresponding error message are
logged instead.
Note that this value is later multiplied by -1 for maximization measures internally, so you
need to enter a larger positive value for maximization here as well.
Default is the worst obtainable value of the performance measure you optimize for when
you aggregate by mean value, or Inf
instead.
For multi-criteria optimization pass a vector of imputation values, one for each of your measures,
in the same order as your measures.
(data.frame)
data.frame
containing the different parameter settings to be evaluated.
The columns have to be named according to the ParamSet
which will be used in tune()
.
Proper designs can be created with ParamHelpers::generateDesign for instance.
(logical(1)
)
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation,
via tuneThreshold?
Only works for classification if the predict type is “prob”.
Default is FALSE
.
(list) Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.
(function
| character(1)
)
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting
performances, and the runtime will be reported.
If set to “memory” the memory usage for each evaluation will also be displayed, with character(1)
small increase
in run time.
Otherwise character(1)
function with arguments learner
, resampling
, measures
,
par.set
, control
, opt.path
, dob
, x
, y
, remove.nas
,
stage
and prev.stage
is expected.
The default displays the performance measures, the time needed for evaluating,
the currently used memory and the max memory ever used before
(the latter two both taken from gc).
See the implementation for details.
Other tune:
TuneControl
,
getNestedTuneResultsOptPathDf()
,
getNestedTuneResultsX()
,
getResamplingIndices()
,
getTuneResult()
,
makeModelMultiplexerParamSet()
,
makeModelMultiplexer()
,
makeTuneControlCMAES()
,
makeTuneControlGenSA()
,
makeTuneControlGrid()
,
makeTuneControlIrace()
,
makeTuneControlMBO()
,
makeTuneControlRandom()
,
makeTuneWrapper()
,
tuneParams()
,
tuneThreshold()