Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected for the Bonferroni-Dunn test, the critical difference interval will be positioned arround the baseline. If not, the best performing algorithm will be chosen as baseline. The positioning of some descriptive elements can be moved by modifying the generated data.
plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)
([critDifferencesData]) Result of generateCritDifferencesData function.
(`character(1)`): ([learner.id]) Overwrites baseline from generateCritDifferencesData! Select a ([learner.id` as baseline for the critical difference diagram, the critical difference will be positioned arround this learner. Defaults to best performing algorithm.
(logical(1)
)
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE
.
ggplot2 plot object.
Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006
Other plot:
createSpatialResamplingPlots()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
plotCalibration()
,
plotLearningCurve()
,
plotPartialDependence()
,
plotROCCurves()
,
plotResiduals()
,
plotThreshVsPerf()
Other benchmark:
BenchmarkResult
,
batchmark()
,
benchmark()
,
convertBMRToRankMatrix()
,
friedmanPostHocTestBMR()
,
friedmanTestBMR()
,
generateCritDifferencesData()
,
getBMRAggrPerformances()
,
getBMRFeatSelResults()
,
getBMRFilteredFeatures()
,
getBMRLearnerIds()
,
getBMRLearnerShortNames()
,
getBMRLearners()
,
getBMRMeasureIds()
,
getBMRMeasures()
,
getBMRModels()
,
getBMRPerformances()
,
getBMRPredictions()
,
getBMRTaskDescs()
,
getBMRTaskIds()
,
getBMRTuneResults()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
reduceBatchmarkResults()
# NOT RUN {
# see benchmark
# }
Run the code above in your browser using DataLab