Visualizes data size (percentage used for model) vs. performance measure(s).
plotLearningCurve(
obj,
facet = "measure",
pretty.names = TRUE,
facet.wrap.nrow = NULL,
facet.wrap.ncol = NULL
)
(LearningCurveData)
Result of generateLearningCurveData, with class LearningCurveData
.
(character(1)
)
Selects “measure” or “learner” to be the facetting variable.
The variable mapped to facet
must have more than one unique value, otherwise it will
be ignored. The variable not chosen is mapped to color if it has more than one unique value.
The default is “measure”.
(logical(1)
)
Whether to use the Measure name instead of the id in the plot.
Default is TRUE
.
(integer)
Number of rows and columns for facetting. Default for both is NULL
.
In this case ggplot's facet_wrap
will choose the layout itself.
ggplot2 plot object.
Other learning_curve:
generateLearningCurveData()
Other plot:
createSpatialResamplingPlots()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
plotCalibration()
,
plotCritDifferences()
,
plotPartialDependence()
,
plotROCCurves()
,
plotResiduals()
,
plotThreshVsPerf()