The function extracts the functional principal components from a data.frame
containing functional features. Uses stats::prcomp
.
extractFDAFPCA(rank. = NULL, center = TRUE, scale. = FALSE)
(data.frame).
(integer(1)
)
Number of principal components to extract.
Default is NULL
(logical(1)
)
Should data be centered before applying PCA?
(logical(1)
)
Should data be scaled before applying PCA?
Other fda_featextractor:
extractFDABsignal()
,
extractFDADTWKernel()
,
extractFDAFourier()
,
extractFDAMultiResFeatures()
,
extractFDATsfeatures()
,
extractFDAWavelets()