The built-ins are:
imputeConstant(const)
for imputation using a constant value,
imputeMedian()
for imputation using the median,
imputeMode()
for imputation using the mode,
imputeMin(multiplier)
for imputing constant values shifted below the minimum
using min(x) - multiplier * diff(range(x))
,
imputeMax(multiplier)
for imputing constant values shifted above the maximum
using max(x) + multiplier * diff(range(x))
,
imputeNormal(mean, sd)
for imputation using normally
distributed random values. Mean and standard deviation will be calculated
from the data if not provided.
imputeHist(breaks, use.mids)
for imputation using random values
with probabilities calculated using table
or hist
.
imputeLearner(learner, features = NULL)
for imputations using the response
of a classification or regression learner.
imputeConstant(const)imputeMedian()
imputeMean()
imputeMode()
imputeMin(multiplier = 1)
imputeMax(multiplier = 1)
imputeUniform(min = NA_real_, max = NA_real_)
imputeNormal(mu = NA_real_, sd = NA_real_)
imputeHist(breaks, use.mids = TRUE)
imputeLearner(learner, features = NULL)
(any)
Constant valued use for imputation.
(numeric(1)
)
Value that stored minimum or maximum is multiplied with when imputation is done.
(numeric(1)
)
Lower bound for uniform distribution.
If NA (default), it will be estimated from the data.
(numeric(1)
)
Upper bound for uniform distribution.
If NA (default), it will be estimated from the data.
(numeric(1)
)
Mean of normal distribution. If missing it will be estimated from the data.
(numeric(1)
)
Standard deviation of normal distribution. If missing it will be estimated from the data.
(numeric(1)
)
Number of breaks to use in graphics::hist. If missing,
defaults to auto-detection via “Sturges”.
(logical(1)
)
If x
is numeric and a histogram is used, impute with bin mids (default)
or instead draw uniformly distributed samples within bin range.
(Learner | character(1)
)
Supervised learner. Its predictions will be used for imputations.
If you pass a string the learner will be created via makeLearner.
Note that the target column is not available for this operation.
(character)
Features to use in learner
for prediction.
Default is NULL
which uses all available features except the target column
of the original task.
Other impute:
impute()
,
makeImputeMethod()
,
makeImputeWrapper()
,
reimpute()