Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected for the Bonferroni-Dunn test, the critical difference interval will be positioned around the baseline. If not, the best performing algorithm will be chosen as baseline.
The positioning of some descriptive elements can be moved by modifying the generated data.
plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)
ggplot2 plot object.
(critDifferencesData
)
Result of generateCritDifferencesData()
.
(character(1)
): (learner.id
)
Overwrites baseline from generateCritDifferencesData()
!
Select a learner.id
as baseline for the critical difference
diagram, the critical difference will be positioned around this learner.
Defaults to best performing algorithm.
(logical(1)
)
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE
.
Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006
Other plot:
createSpatialResamplingPlots()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
plotCalibration()
,
plotLearningCurve()
,
plotPartialDependence()
,
plotROCCurves()
,
plotResiduals()
,
plotThreshVsPerf()
Other benchmark:
BenchmarkResult
,
batchmark()
,
benchmark()
,
convertBMRToRankMatrix()
,
friedmanPostHocTestBMR()
,
friedmanTestBMR()
,
generateCritDifferencesData()
,
getBMRAggrPerformances()
,
getBMRFeatSelResults()
,
getBMRFilteredFeatures()
,
getBMRLearnerIds()
,
getBMRLearnerShortNames()
,
getBMRLearners()
,
getBMRMeasureIds()
,
getBMRMeasures()
,
getBMRModels()
,
getBMRPerformances()
,
getBMRPredictions()
,
getBMRTaskDescs()
,
getBMRTaskIds()
,
getBMRTuneResults()
,
plotBMRBoxplots()
,
plotBMRRanksAsBarChart()
,
plotBMRSummary()
,
reduceBatchmarkResults()