See predict.threshold
in makeLearner and setThreshold.
For complex wrappers only the top-level predict.type
is currently set.
setPredictThreshold(learner, predict.threshold)
Learner.
(Learner | character(1)
)
The learner.
If you pass a string the learner will be created via makeLearner.
(numeric)
Threshold to produce class labels. Has to be a named vector, where names correspond to class labels.
Only for binary classification it can be a single numerical threshold for the positive class.
See setThreshold for details on how it is applied.
Default is NULL
which means 0.5 / an equal threshold for each class.
Other predict:
asROCRPrediction()
,
getPredictionProbabilities()
,
getPredictionResponse()
,
getPredictionTaskDesc()
,
predict.WrappedModel()
,
setPredictType()
Other learner:
LearnerProperties
,
getClassWeightParam()
,
getHyperPars()
,
getLearnerId()
,
getLearnerNote()
,
getLearnerPackages()
,
getLearnerParVals()
,
getLearnerParamSet()
,
getLearnerPredictType()
,
getLearnerShortName()
,
getLearnerType()
,
getParamSet()
,
helpLearnerParam()
,
helpLearner()
,
makeLearners()
,
makeLearner()
,
removeHyperPars()
,
setHyperPars()
,
setId()
,
setLearnerId()
,
setPredictType()