Possible prediction types are: Classification: Labels or class probabilities (including labels). Regression: Numeric or response or standard errors (including numeric response). Survival: Linear predictor or survival probability.
For complex wrappers the predict type is usually also passed down the encapsulated learner in a recursive fashion.
setPredictType(learner, predict.type)Learner.
(Learner | character(1))
The learner.
If you pass a string the learner will be created via makeLearner.
(character(1))
Classification: “response” or “prob”.
Regression: “response” or “se”.
Survival: “response” (linear predictor) or “prob”.
Clustering: “response” or “prob”.
Default is “response”.
Other predict:
asROCRPrediction(),
getPredictionProbabilities(),
getPredictionResponse(),
getPredictionTaskDesc(),
predict.WrappedModel(),
setPredictThreshold()
Other learner:
LearnerProperties,
getClassWeightParam(),
getHyperPars(),
getLearnerId(),
getLearnerNote(),
getLearnerPackages(),
getLearnerParVals(),
getLearnerParamSet(),
getLearnerPredictType(),
getLearnerShortName(),
getLearnerType(),
getParamSet(),
helpLearnerParam(),
helpLearner(),
makeLearners(),
makeLearner(),
removeHyperPars(),
setHyperPars(),
setId(),
setLearnerId(),
setPredictThreshold()