Learn R Programming

mlr (version 2.19.1)

plotCritDifferences: Plot critical differences for a selected measure.

Description

Plots a critical-differences diagram for all classifiers and a selected measure. If a baseline is selected for the Bonferroni-Dunn test, the critical difference interval will be positioned around the baseline. If not, the best performing algorithm will be chosen as baseline.

The positioning of some descriptive elements can be moved by modifying the generated data.

Usage

plotCritDifferences(obj, baseline = NULL, pretty.names = TRUE)

Value

ggplot2 plot object.

Arguments

obj

(critDifferencesData) Result of generateCritDifferencesData().

baseline

(character(1)): (learner.id)
Overwrites baseline from generateCritDifferencesData()!
Select a learner.id as baseline for the critical difference diagram, the critical difference will be positioned around this learner. Defaults to best performing algorithm.

pretty.names

(logical(1))
Whether to use the short name of the learner instead of its ID in labels. Defaults to TRUE.

References

Janez Demsar, Statistical Comparisons of Classifiers over Multiple Data Sets, JMLR, 2006

See Also

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotLearningCurve(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()

Other benchmark: BenchmarkResult, batchmark(), benchmark(), convertBMRToRankMatrix(), friedmanPostHocTestBMR(), friedmanTestBMR(), generateCritDifferencesData(), getBMRAggrPerformances(), getBMRFeatSelResults(), getBMRFilteredFeatures(), getBMRLearnerIds(), getBMRLearnerShortNames(), getBMRLearners(), getBMRMeasureIds(), getBMRMeasures(), getBMRModels(), getBMRPerformances(), getBMRPredictions(), getBMRTaskDescs(), getBMRTaskIds(), getBMRTuneResults(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), reduceBatchmarkResults()

Examples

Run this code
# see benchmark

Run the code above in your browser using DataLab