Learn R Programming

mlr (version 2.19.1)

plotLearningCurve: Plot learning curve data using ggplot2.

Description

Visualizes data size (percentage used for model) vs. performance measure(s).

Usage

plotLearningCurve(
  obj,
  facet = "measure",
  pretty.names = TRUE,
  facet.wrap.nrow = NULL,
  facet.wrap.ncol = NULL
)

Value

ggplot2 plot object.

Arguments

obj

(LearningCurveData)
Result of generateLearningCurveData, with class LearningCurveData.

facet

(character(1))
Selects “measure” or “learner” to be the facetting variable. The variable mapped to facet must have more than one unique value, otherwise it will be ignored. The variable not chosen is mapped to color if it has more than one unique value. The default is “measure”.

pretty.names

(logical(1))
Whether to use the Measure name instead of the id in the plot. Default is TRUE.

facet.wrap.nrow, facet.wrap.ncol

(integer)
Number of rows and columns for facetting. Default for both is NULL. In this case ggplot's facet_wrap will choose the layout itself.

See Also

Other learning_curve: generateLearningCurveData()

Other plot: createSpatialResamplingPlots(), plotBMRBoxplots(), plotBMRRanksAsBarChart(), plotBMRSummary(), plotCalibration(), plotCritDifferences(), plotPartialDependence(), plotROCCurves(), plotResiduals(), plotThreshVsPerf()